耐久性
生命周期评估
持续性
使用寿命
建筑工程
桥(图论)
计算机科学
建筑工程
风险分析(工程)
工程类
可靠性工程
业务
生产(经济)
生物
数据库
医学
内科学
宏观经济学
经济
生态学
作者
Chen Li,Jiaqi Li,Qiang Ren,Qiaomu Zheng,Zhengwu Jiang
标识
DOI:10.1016/j.cemconcomp.2023.105041
摘要
Extending the service life of structures is an important strategy to mitigate the environmental impacts, in particular, the global warming potential, of the building sector. As a key factor determining service life, the durability performance of reinforced concrete has been investigated for decades. Yet, durability's impact on the eco-efficiency of materials and structures has not been well realized until the early 2010s. Today, an increasing number of publications focus on concrete durability coupled with life cycle assessment (LCA), an important tool for analyzing eco-efficiency. However, the gap between the two research fields, i.e., durability and LCA, has led to divergent methodologies, which hinders the consensus between studies. To bridge this gap, this review covers the recent advances in durability-based LCA. Three aspects were highlighted: 1) how durability influences the eco-efficiency of cementitious materials; 2) how LCA models these effects; and 3) how we come to more justified results. The review argues the necessity of a unified methodology in this field and identifies the importance of performance-based models in justifying durability-based LCA. Further, a framework grounded on the prescriptive and performance-based design methods was proposed to unify the existing divergent methodologies. This framework will facilitate improving the future engineering codes underlining sustainability.
科研通智能强力驱动
Strongly Powered by AbleSci AI