已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Targeted Adversarial Attack Against Deep Cross-Modal Hashing Retrieval

计算机科学 散列函数 对抗制 人工智能 情态动词 计算机安全 化学 高分子化学
作者
Tianshi Wang,Lei Zhu,Zheng Zhang,Huaxiang Zhang,Junwei Han
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 6159-6172 被引量:12
标识
DOI:10.1109/tcsvt.2023.3263054
摘要

Deep cross-modal hashing has achieved excellent retrieval performance with the powerful representation capability of deep neural networks. Regrettably, current methods are inevitably vulnerable to adversarial attacks, especially well-designed subtle perturbations that can easily fool deep cross-modal hashing models into returning irrelevant or the attacker's specified results. Although adversarial attacks have attracted increasing attention, there are few studies on specialized attacks against deep cross-modal hashing. To solve these issues, we propose a targeted adversarial attack method against deep cross-modal hashing retrieval in this paper. To the best of our knowledge, this is the first work in this research field. Concretely, we first build a progressive fusion module to extract fine-grained target semantics through a progressive attention mechanism. Meanwhile, we design a semantic adaptation network to generate the target prototype code and reconstruct the category label, thus realizing the semantic interaction between the target semantics and the implicit semantics of the attacked model. To bridge modality gaps and preserve local example details, a semantic translator seamlessly translates the target semantics and then embeds them into benign examples in collaboration with a U-Net framework. Moreover, we construct a discriminator for adversarial training, which enhances the visual realism and category discrimination of adversarial examples, thus improving their targeted attack performance. Extensive experiments on widely tested cross-modal retrieval datasets demonstrate the superiority of our proposed method. Also, transferable attacks show that our generated adversarial examples have well generalization capability on targeted attacks. The source codes and datasets are available at https://github.com/tswang0116/TA-DCH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助逍遥采纳,获得30
1秒前
活泼寻梅发布了新的文献求助10
1秒前
慕青应助111aaa采纳,获得10
2秒前
afli完成签到 ,获得积分0
7秒前
7秒前
SciGPT应助夜阑卧听采纳,获得10
11秒前
顺利山柏完成签到 ,获得积分10
13秒前
13秒前
WerWu完成签到,获得积分10
15秒前
adam完成签到 ,获得积分10
15秒前
完美世界应助return采纳,获得50
17秒前
兰月满楼完成签到 ,获得积分10
19秒前
YEM完成签到 ,获得积分10
19秒前
赘婿应助duoduo采纳,获得10
22秒前
九日橙完成签到 ,获得积分10
23秒前
闵其其完成签到 ,获得积分10
23秒前
小肖完成签到 ,获得积分10
25秒前
29秒前
147发布了新的文献求助200
29秒前
阿飞完成签到,获得积分10
30秒前
30秒前
31秒前
傲娇的笑白完成签到 ,获得积分10
33秒前
逍遥发布了新的文献求助30
33秒前
黑马王子发布了新的文献求助10
34秒前
34秒前
毕光完成签到,获得积分20
34秒前
QiongYin_123完成签到 ,获得积分10
36秒前
duoduo发布了新的文献求助10
36秒前
xiaohongmao发布了新的文献求助10
39秒前
42秒前
Summer完成签到 ,获得积分10
46秒前
Gigi完成签到,获得积分10
46秒前
高君奇发布了新的文献求助10
48秒前
51秒前
51秒前
zz_1997完成签到 ,获得积分10
52秒前
月5114完成签到 ,获得积分10
52秒前
司徒冬菱完成签到 ,获得积分10
54秒前
55秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804075
求助须知:如何正确求助?哪些是违规求助? 3348868
关于积分的说明 10340757
捐赠科研通 3065067
什么是DOI,文献DOI怎么找? 1682857
邀请新用户注册赠送积分活动 808549
科研通“疑难数据库(出版商)”最低求助积分说明 764563