Knowledge-guided multi-granularity GCN for ABSA

计算机科学 粒度 稳健性(进化) 标杆管理 判决 人工智能 情绪分析 卷积神经网络 学期 自然语言处理 图形 机器学习 理论计算机科学 操作系统 生物化学 化学 管理 营销 经济 业务 基因 任务(项目管理)
作者
Zhenfang Zhu,Dianyuan Zhang,Lin Li,Kefeng Li,Jiangtao Qi,Wen-Ling Wang,Guangyuan Zhang,Peiyu Liu
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:60 (2): 103223-103223 被引量:49
标识
DOI:10.1016/j.ipm.2022.103223
摘要

Aspect-based sentiment analysis aims to determine sentiment polarities toward specific aspect terms within the same sentence or document. Most recent studies adopted attention-based neural network models to implicitly connect aspect terms with context words. However, these studies were limited by insufficient interaction between aspect terms and opinion words, leading to poor performance on robustness test sets. In addition, we have found that robustness test sets create new sentences that interfere with the original information of a sentence, which often makes the text too long and leads to the problem of long-distance dependence. Simultaneously, these new sentences produce more non-target aspect terms, misleading the model because of the lack of relevant knowledge guidance. This study proposes a knowledge guided multi-granularity graph convolutional neural network (KMGCN) to solve these problems. The multi-granularity attention mechanism is designed to enhance the interaction between aspect terms and opinion words. To address the long-distance dependence, KMGCN uses a graph convolutional network that relies on a semantic map based on fine-tuning pre-trained models. In particular, KMGCN uses a mask mechanism guided by conceptual knowledge to encounter more aspect terms (including target and non-target aspect terms). Experiments are conducted on 12 SemEval-2014 variant benchmarking datasets, and the results demonstrated the effectiveness of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
又见三皮完成签到,获得积分10
1秒前
1秒前
陶醉的新瑶完成签到,获得积分10
2秒前
善学以致用应助cometx采纳,获得30
2秒前
科研通AI5应助py999采纳,获得10
2秒前
nozero应助彭佳丽采纳,获得50
3秒前
4秒前
小二郎应助66采纳,获得10
4秒前
大气寄松发布了新的文献求助10
6秒前
xQcQn完成签到,获得积分10
7秒前
7秒前
7秒前
VXIAO发布了新的文献求助10
7秒前
愉快的丹雪完成签到,获得积分20
8秒前
小宁完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
动听的菠萝完成签到,获得积分10
11秒前
汉堡包应助Kz采纳,获得10
12秒前
可爱的函函应助T拐拐采纳,获得10
12秒前
大白狐狸完成签到,获得积分10
12秒前
14秒前
iidae完成签到,获得积分10
15秒前
15秒前
大气寄松完成签到,获得积分10
17秒前
17秒前
Remote发布了新的文献求助10
21秒前
21秒前
肖文娣发布了新的文献求助10
23秒前
科研通AI5应助ohh采纳,获得10
24秒前
zho发布了新的文献求助10
24秒前
乐乐应助科研通管家采纳,获得10
24秒前
大模型应助科研通管家采纳,获得10
24秒前
今后应助科研通管家采纳,获得10
25秒前
cdercder应助科研通管家采纳,获得20
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
无曲应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得20
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812662
求助须知:如何正确求助?哪些是违规求助? 3357172
关于积分的说明 10385360
捐赠科研通 3074404
什么是DOI,文献DOI怎么找? 1688770
邀请新用户注册赠送积分活动 812327
科研通“疑难数据库(出版商)”最低求助积分说明 766986