Target-aware Dual Adversarial Learning and a Multi-scenario Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection

水准点(测量) 计算机科学 人工智能 目标检测 模态(人机交互) 保险丝(电气) 判别式 机器学习 深度学习 编码(集合论) 图像融合 计算机视觉 模式识别(心理学) 图像(数学) 电气工程 工程类 大地测量学 集合(抽象数据类型) 程序设计语言 地理
作者
Jinyuan Liu,Xin Fan,Zhanbo Huang,Guanyao Wu,Risheng Liu,Wei Zhong,Zhongxuan Luo
标识
DOI:10.1109/cvpr52688.2022.00571
摘要

This study addresses the issue of fusing infrared and visible images that appear differently for object detection. Aiming at generating an image of high visual quality, previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks. These approaches neglect that modality differences implying the complementary information are extremely important for both fusion and subsequent detection task. This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network. The fusion network with one generator and dual discriminators seeks commons while learning from differences, which preserves structural information of targets from the infrared and textural details from the visible. Furthermore, we build a synchronized imaging system with calibrated infrared and optical sensors, and collect currently the most comprehensive benchmark covering a wide range of scenarios. Extensive experiments on several public datasets and our benchmark demonstrate that our method outputs not only visually appealing fusion but also higher detection mAP than the state-of-the-art approaches. The source code and benchmark are available at https://github.com/dlut-dimt/TarDAL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.2应助研友_n0QYAZ采纳,获得10
刚刚
1秒前
4秒前
fan完成签到,获得积分10
6秒前
9秒前
张雨露发布了新的文献求助10
12秒前
YOLO应助遇见采纳,获得10
12秒前
lee完成签到,获得积分10
13秒前
个性的饼干完成签到,获得积分10
15秒前
4466完成签到,获得积分10
15秒前
16秒前
17秒前
文文完成签到 ,获得积分10
19秒前
RiziaJahanRiza完成签到,获得积分20
20秒前
21秒前
弱水完成签到 ,获得积分10
21秒前
明理冷梅完成签到 ,获得积分10
24秒前
忧心的雯发布了新的文献求助30
24秒前
25秒前
25秒前
26秒前
阮通完成签到 ,获得积分10
28秒前
28秒前
包破茧发布了新的文献求助10
28秒前
29秒前
percy完成签到,获得积分10
29秒前
忆修发布了新的文献求助10
31秒前
何必在乎发布了新的文献求助10
31秒前
hkh完成签到,获得积分10
35秒前
35秒前
36秒前
英俊的铭应助何必在乎采纳,获得10
37秒前
38秒前
41秒前
41秒前
41秒前
41秒前
41秒前
41秒前
田様应助科研通管家采纳,获得10
41秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847680
求助须知:如何正确求助?哪些是违规求助? 6229178
关于积分的说明 15620914
捐赠科研通 4964389
什么是DOI,文献DOI怎么找? 2676610
邀请新用户注册赠送积分活动 1621087
关于科研通互助平台的介绍 1577089