Self-supervised learning-based Multi-Scale feature Fusion Network for survival analysis from whole slide images

计算机科学 人工智能 特征提取 模式识别(心理学) 卷积神经网络 特征(语言学) 特征学习 随机森林 熵(时间箭头) 数据挖掘 机器学习 语言学 量子力学 物理 哲学
作者
L. K. Li,Yong Liang,Mingwen Shao,Shanghui Lu,Shuilin Liao,Dong Ouyang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:153: 106482-106482 被引量:13
标识
DOI:10.1016/j.compbiomed.2022.106482
摘要

Understanding prognosis and mortality is critical for evaluating the treatment plan of patients. Advances in digital pathology and deep learning techniques have made it practical to perform survival analysis in whole slide images (WSIs). Current methods are usually based on a multi-stage framework which includes patch sampling, feature extraction and prediction. However, the random patch sampling strategy is highly unstable and prone to sampling non-ROI. Feature extraction typically relies on hand-crafted features or convolutional neural networks (CNNs) pre-trained on ImageNet, while the artificial error or domain gaps may affect the survival prediction performance. Besides, the limited information representation of local sampling patches will create a bottleneck limitation on the effectiveness of prediction. To address the above challenges, we propose a novel patch sampling strategy based on image information entropy and construct a Multi-Scale feature Fusion Network (MSFN) based on self-supervised feature extractor. Specifically, we adopt image information entropy as a criterion to select representative sampling patches, thereby avoiding the noise interference caused by random to blank regions. Meanwhile, we pretrain the feature extractor utilizing self-supervised learning mechanism to improve the efficiency of feature extraction. Furthermore, a global-local feature fusion prediction network based on the attention mechanism is constructed to improve the survival prediction effect of WSIs with comprehensive multi-scale information representation. The proposed method is validated by adequate experiments and achieves competitive results on both of the most popular WSIs survival analysis datasets, TCGA-GBM and TCGA-LUSC. Code and trained models are made available at: https://github.com/Mercuriiio/MSFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7and7发布了新的文献求助10
2秒前
勇哥发布了新的文献求助10
2秒前
qujinzhi完成签到 ,获得积分10
2秒前
dyzhao6发布了新的文献求助10
2秒前
蓝风铃完成签到 ,获得积分10
4秒前
和谐的烙完成签到,获得积分20
6秒前
自由的花关注了科研通微信公众号
7秒前
qqaeao完成签到,获得积分10
9秒前
坚定的之卉完成签到,获得积分10
11秒前
11秒前
平头哥哥完成签到 ,获得积分10
12秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
善学以致用应助Tom的梦想采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
13秒前
NexusExplorer应助坚定的之卉采纳,获得10
15秒前
豆包完成签到,获得积分10
15秒前
dyzhao6发布了新的文献求助10
17秒前
18秒前
bainwei发布了新的文献求助20
19秒前
22秒前
当莉发布了新的文献求助20
23秒前
Tom的梦想发布了新的文献求助10
26秒前
31秒前
东风发布了新的文献求助10
32秒前
bainwei完成签到,获得积分10
37秒前
研友_VZG7GZ应助遇见0608采纳,获得10
39秒前
Young4399完成签到 ,获得积分10
39秒前
40秒前
勤恳涵菡完成签到 ,获得积分20
42秒前
田様应助lin采纳,获得10
42秒前
zoey发布了新的文献求助10
43秒前
可靠的书本完成签到,获得积分10
43秒前
想不想发布了新的文献求助10
45秒前
45秒前
48秒前
泡芙完成签到 ,获得积分10
49秒前
51秒前
得我完成签到,获得积分10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781383
求助须知:如何正确求助?哪些是违规求助? 3326891
关于积分的说明 10228650
捐赠科研通 3041878
什么是DOI,文献DOI怎么找? 1669613
邀请新用户注册赠送积分活动 799161
科研通“疑难数据库(出版商)”最低求助积分说明 758751