亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-supervised learning-based Multi-Scale feature Fusion Network for survival analysis from whole slide images

计算机科学 人工智能 特征提取 模式识别(心理学) 卷积神经网络 特征(语言学) 特征学习 随机森林 熵(时间箭头) 数据挖掘 机器学习 语言学 量子力学 物理 哲学
作者
L. K. Li,Yong Liang,Mingwen Shao,Shanghui Lu,Shuilin Liao,Dong Ouyang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:153: 106482-106482 被引量:13
标识
DOI:10.1016/j.compbiomed.2022.106482
摘要

Understanding prognosis and mortality is critical for evaluating the treatment plan of patients. Advances in digital pathology and deep learning techniques have made it practical to perform survival analysis in whole slide images (WSIs). Current methods are usually based on a multi-stage framework which includes patch sampling, feature extraction and prediction. However, the random patch sampling strategy is highly unstable and prone to sampling non-ROI. Feature extraction typically relies on hand-crafted features or convolutional neural networks (CNNs) pre-trained on ImageNet, while the artificial error or domain gaps may affect the survival prediction performance. Besides, the limited information representation of local sampling patches will create a bottleneck limitation on the effectiveness of prediction. To address the above challenges, we propose a novel patch sampling strategy based on image information entropy and construct a Multi-Scale feature Fusion Network (MSFN) based on self-supervised feature extractor. Specifically, we adopt image information entropy as a criterion to select representative sampling patches, thereby avoiding the noise interference caused by random to blank regions. Meanwhile, we pretrain the feature extractor utilizing self-supervised learning mechanism to improve the efficiency of feature extraction. Furthermore, a global-local feature fusion prediction network based on the attention mechanism is constructed to improve the survival prediction effect of WSIs with comprehensive multi-scale information representation. The proposed method is validated by adequate experiments and achieves competitive results on both of the most popular WSIs survival analysis datasets, TCGA-GBM and TCGA-LUSC. Code and trained models are made available at: https://github.com/Mercuriiio/MSFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
39秒前
qqq完成签到,获得积分10
47秒前
1分钟前
2分钟前
45度人发布了新的文献求助20
2分钟前
45度人完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
酷炫的咖啡豆给闪闪木子的求助进行了留言
3分钟前
3分钟前
村上春树的摩的完成签到 ,获得积分10
3分钟前
4分钟前
小二郎应助科研通管家采纳,获得10
4分钟前
sino-ft完成签到,获得积分10
4分钟前
4分钟前
4分钟前
顾矜应助max采纳,获得10
4分钟前
4分钟前
MchemG完成签到,获得积分0
4分钟前
max发布了新的文献求助10
5分钟前
bji完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
ZYP应助科研通管家采纳,获得10
6分钟前
Lucas应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
优秀冰真发布了新的文献求助10
6分钟前
ldjldj_2004完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
思源应助每天都在掉头发采纳,获得10
6分钟前
6分钟前
优秀冰真完成签到,获得积分10
7分钟前
7分钟前
ZYP应助科研通管家采纳,获得10
8分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3922134
求助须知:如何正确求助?哪些是违规求助? 3466855
关于积分的说明 10945511
捐赠科研通 3195777
什么是DOI,文献DOI怎么找? 1765860
邀请新用户注册赠送积分活动 855784
科研通“疑难数据库(出版商)”最低求助积分说明 795104