Suppression of the coffee-ring effect by shape-dependent capillary interactions

咖啡环效应 下降(电信) 毛细管作用 化学 球体 化学物理 粒子(生态学) 蒸发 机械 材料科学 复合材料 纳米技术 物理 气象学 计算机科学 地质学 海洋学 电信 天文
作者
Peter J. Yunker,Tim Still,Matthew Lohr,Arjun G. Yodh
出处
期刊:Nature [Nature Portfolio]
卷期号:476 (7360): 308-311 被引量:1437
标识
DOI:10.1038/nature10344
摘要

When a drop of liquid dries on a solid surface, its suspended particulate matter is deposited in ring-like fashion. This phenomenon, known as the coffee-ring effect, is familiar to anyone who has observed a drop of coffee dry. During the drying process, drop edges become pinned to the substrate, and capillary flow outward from the centre of the drop brings suspended particles to the edge as evaporation proceeds. After evaporation, suspended particles are left highly concentrated along the original drop edge. The coffee-ring effect is manifested in systems with diverse constituents, ranging from large colloids to nanoparticles and individual molecules. In fact--despite the many practical applications for uniform coatings in printing, biology and complex assembly-the ubiquitous nature of the effect has made it difficult to avoid. Here we show experimentally that the shape of the suspended particles is important and can be used to eliminate the coffee-ring effect: ellipsoidal particles are deposited uniformly during evaporation. The anisotropic shape of the particles significantly deforms interfaces, producing strong interparticle capillary interactions. Thus, after the ellipsoids are carried to the air-water interface by the same outward flow that causes the coffee-ring effect for spheres, strong long-ranged interparticle attractions between ellipsoids lead to the formation of loosely packed or arrested structures on the air-water interface. These structures prevent the suspended particles from reaching the drop edge and ensure uniform deposition. Interestingly, under appropriate conditions, suspensions of spheres mixed with a small number of ellipsoids also produce uniform deposition. Thus, particle shape provides a convenient parameter to control the deposition of particles, without modification of particle or solvent chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助weishao采纳,获得10
刚刚
jason发布了新的文献求助10
2秒前
西柚完成签到,获得积分10
2秒前
研友_LJaro8完成签到,获得积分10
5秒前
bathygobius完成签到,获得积分10
6秒前
10秒前
隐形曼青应助最棒哒采纳,获得10
11秒前
知识四面八方来完成签到 ,获得积分10
12秒前
sunshine发布了新的文献求助10
14秒前
yzee完成签到,获得积分20
15秒前
16秒前
子铭完成签到,获得积分10
16秒前
tao完成签到 ,获得积分10
17秒前
18秒前
罗大大完成签到 ,获得积分10
18秒前
19秒前
20秒前
ZHANG_Kun完成签到 ,获得积分10
21秒前
通通通发布了新的文献求助10
21秒前
淡然白安发布了新的文献求助30
21秒前
sunshine完成签到,获得积分10
22秒前
23秒前
文迪发布了新的文献求助10
24秒前
吴千雨发布了新的文献求助10
25秒前
司空豁完成签到 ,获得积分10
25秒前
最棒哒发布了新的文献求助10
27秒前
27秒前
27秒前
光亮嵩发布了新的文献求助10
27秒前
29秒前
梁_完成签到 ,获得积分10
29秒前
31秒前
青山完成签到,获得积分10
31秒前
hinatazaka46完成签到 ,获得积分10
31秒前
科研通AI5应助文迪采纳,获得10
33秒前
小竹子完成签到 ,获得积分10
35秒前
Jing完成签到,获得积分10
36秒前
共享精神应助zty123采纳,获得10
36秒前
Anaero完成签到,获得积分10
38秒前
彭于晏应助Alex采纳,获得10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777877
求助须知:如何正确求助?哪些是违规求助? 3323387
关于积分的说明 10214219
捐赠科研通 3038610
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304