数学
巴拿赫空间
数学分析
类型(生物学)
订单(交换)
抛物型偏微分方程
理论(学习稳定性)
边值问题
初值问题
空格(标点符号)
柯西问题
纯数学
微分方程
机器学习
生物
哲学
经济
语言学
计算机科学
生态学
财务
作者
Allaberen Ashyralyev,П. Е. Соболевский
出处
期刊:Birkhäuser Basel eBooks
[Birkhäuser Basel]
日期:2004-01-01
卷期号:: 99-196
被引量:325
标识
DOI:10.1007/978-3-0348-7922-4_4
摘要
In the present chapter we consider the well-posedness of an abstract Cauchy problem for differential equations of parabolic type, $$v'(t) + A(t)v(t) = f(t)(0 \leqslant t \leqslant T),v(0) = {{v}_{0}}$$ in an arbitrary Banach space with the linear positive operators A(t). The high order of accuracy difference schemes generated by an exact difference scheme or by Taylor's decomposition on two points for the numerical solutions of this problem are presented. The well-posedness of these difference schemes in various Banach spaces are studied. The stability and coercive stability estimates in Holder norms for the solutions of the high order of accuracy difference schemes of mixed type boundary-value problems for parabolic equations are obtained.
科研通智能强力驱动
Strongly Powered by AbleSci AI