The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem

生物 人口 采样(信号处理) 泛混合症 统计 估计员 稳健性(进化) 人口规模 样本量测定 人口结构 样品(材料) 进化生物学 数学 计算机科学 微卫星 遗传学 人口学 计算机视觉 色谱法 社会学 化学 滤波器(信号处理) 等位基因 基因
作者
Sébastien J. Puechmaille
出处
期刊:Molecular Ecology Resources [Wiley]
卷期号:16 (3): 608-627 被引量:926
标识
DOI:10.1111/1755-0998.12512
摘要

Abstract Inferences of population structure and more precisely the identification of genetically homogeneous groups of individuals are essential to the fields of ecology, evolutionary biology and conservation biology. Such population structure inferences are routinely investigated via the program structure implementing a Bayesian algorithm to identify groups of individuals at Hardy–Weinberg and linkage equilibrium. While the method is performing relatively well under various population models with even sampling between subpopulations, the robustness of the method to uneven sample size between subpopulations and/or hierarchical levels of population structure has not yet been tested despite being commonly encountered in empirical data sets. In this study, I used simulated and empirical microsatellite data sets to investigate the impact of uneven sample size between subpopulations and/or hierarchical levels of population structure on the detected population structure. The results demonstrated that uneven sampling often leads to wrong inferences on hierarchical structure and downward‐biased estimates of the true number of subpopulations. Distinct subpopulations with reduced sampling tended to be merged together, while at the same time, individuals from extensively sampled subpopulations were generally split, despite belonging to the same panmictic population. Four new supervised methods to detect the number of clusters were developed and tested as part of this study and were found to outperform the existing methods using both evenly and unevenly sampled data sets. Additionally, a subsampling strategy aiming to reduce sampling unevenness between subpopulations is presented and tested. These results altogether demonstrate that when sampling evenness is accounted for, the detection of the correct population structure is greatly improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
跖案占关注了科研通微信公众号
1秒前
ding应助张张大章鱼采纳,获得10
1秒前
乐乐应助开朗渊思采纳,获得10
1秒前
1秒前
2秒前
FashionBoy应助47采纳,获得10
2秒前
小兵发布了新的文献求助10
2秒前
叮叮发布了新的文献求助10
2秒前
diguohu完成签到,获得积分10
2秒前
Age完成签到,获得积分10
2秒前
科研通AI5应助Lillian采纳,获得10
3秒前
3秒前
左左发布了新的文献求助10
3秒前
天阳完成签到,获得积分10
3秒前
宋慧茹完成签到,获得积分10
3秒前
压线大王完成签到 ,获得积分10
4秒前
qq完成签到 ,获得积分10
5秒前
jjhh完成签到,获得积分20
5秒前
Huang发布了新的文献求助10
5秒前
yangyu发布了新的文献求助10
6秒前
一川烟叶完成签到,获得积分10
6秒前
johnhush完成签到 ,获得积分10
6秒前
好运6连发布了新的文献求助10
7秒前
春风完成签到,获得积分10
7秒前
8秒前
111完成签到,获得积分20
8秒前
snowpie完成签到 ,获得积分10
8秒前
cece完成签到 ,获得积分10
9秒前
行健灵山完成签到 ,获得积分10
10秒前
阿白完成签到 ,获得积分10
10秒前
浮游应助窗外风雨阑珊采纳,获得10
10秒前
修炼哥完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
科研通AI6应助王木木采纳,获得10
11秒前
Huanghong完成签到,获得积分10
12秒前
12秒前
张姣姣完成签到,获得积分10
12秒前
12秒前
充电宝应助zhu采纳,获得10
12秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5119112
求助须知:如何正确求助?哪些是违规求助? 4324929
关于积分的说明 13474611
捐赠科研通 4158140
什么是DOI,文献DOI怎么找? 2278807
邀请新用户注册赠送积分活动 1280560
关于科研通互助平台的介绍 1219303