Multi-strategy fusion differential evolution algorithm for UAV path planning in complex environment

运动规划 差异进化 人口 计算机科学 数学优化 路径(计算) 规划师 最优化问题 人工智能 算法 机器人 数学 社会学 人口学 程序设计语言
作者
Xuzhao Chai,Zhishuai Zheng,Junming Xiao,Yan Li,Boyang Qu,Pengwei Wen,Haoyu Wang,You Zhou,Hang Sun
出处
期刊:Aerospace Science and Technology [Elsevier BV]
卷期号:121: 107287-107287 被引量:69
标识
DOI:10.1016/j.ast.2021.107287
摘要

The path planning of Unmanned Aerial Vehicle (UAV) is a real-world optimization problem, and even develops into a hard optimization problem with many objectives and constraints when UAVs work in a complex environment. In a complex environment, the resulting constraints can lead to decrease the quantity of the feasible solutions, so that can bring difficulties to plan routes for UAVs. Therefore, it is necessary to design a high-quality planner for a UAV in a complex environment. In this work, we have proposed a Multi-Strategy Fusion Differential Evolution algorithm (MSFDE). The proposed algorithm integrates the multi-population strategy, the novel self-adaptive strategy and the ensemble of the interactive mutation strategy in order to balance the exploitation and exploration capabilities. The multi-population strategy is used to divide the whole population into the three indicator subpopulations and a reward subpopulation for maintaining the diversity of the whole population; the novel self-adaptive strategy is introduced to control the parameters F and CR based on the teaching-learning-based optimization method; the ensemble of the interactive mutation strategy is to exchange the information among the three indicator subpopulations on each generation for boosting the population diversity. The constraints in the UAV path planning are transformed into the objective functions by the linear weighted sum method. Scenario 1, 2, 3, and 4 are designed with different complex level, and other eight algorithms are introduced to be compared with MSFDE. The simulation results confirm that MSFDE has an outstanding performance for the UAV three-dimensional path planning in the complex environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cheung2121完成签到,获得积分20
3秒前
gcy发布了新的文献求助10
4秒前
chenchen发布了新的文献求助10
4秒前
能干夏波完成签到,获得积分10
5秒前
Cheung2121发布了新的文献求助10
5秒前
张青岳完成签到,获得积分10
5秒前
彦希完成签到 ,获得积分10
7秒前
7秒前
华仔应助BUCI采纳,获得10
8秒前
8秒前
852应助叫我学霸男神裴采纳,获得10
9秒前
笨笨芯发布了新的文献求助30
11秒前
AAA弱智写论文完成签到,获得积分10
13秒前
sl发布了新的文献求助10
13秒前
鸣风完成签到,获得积分10
14秒前
情怀应助笨笨芯采纳,获得10
15秒前
KY完成签到,获得积分10
15秒前
包元霜完成签到,获得积分10
16秒前
吴晨曦完成签到 ,获得积分10
18秒前
王振有发布了新的文献求助10
19秒前
sl完成签到,获得积分10
21秒前
熊大完成签到,获得积分10
23秒前
25秒前
耀快乐发布了新的文献求助10
27秒前
28秒前
SciGPT应助三泥采纳,获得20
28秒前
29秒前
29秒前
yu完成签到,获得积分10
29秒前
三十七度医完成签到,获得积分10
29秒前
慕青应助chenchen采纳,获得10
30秒前
33秒前
赫连涵柏完成签到,获得积分0
34秒前
34秒前
SEM小菜鸡发布了新的文献求助10
35秒前
35秒前
Migrol发布了新的文献求助10
36秒前
魔幻安筠发布了新的文献求助10
37秒前
koko完成签到,获得积分20
38秒前
爆美完成签到 ,获得积分10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776905
求助须知:如何正确求助?哪些是违规求助? 3322325
关于积分的说明 10209713
捐赠科研通 3037674
什么是DOI,文献DOI怎么找? 1666792
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757984