亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Decoding Color Visual Working Memory from EEG Signals Using Graph Convolutional Neural Networks

解码方法 计算机科学 工作记忆 脑电图 人工智能 卷积神经网络 模式识别(心理学) 图形 认知 编码(内存) 颜色编码 心理学 神经科学 算法 理论计算机科学
作者
Xiaowei Che,Yuanjie Zheng,Xin Chen,Sutao Song,Shouxin Li
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:32 (02): 2250003-2250003 被引量:19
标识
DOI:10.1142/s0129065722500034
摘要

Color has an important role in object recognition and visual working memory (VWM). Decoding color VWM in the human brain is helpful to understand the mechanism of visual cognitive process and evaluate memory ability. Recently, several studies showed that color could be decoded from scalp electroencephalogram (EEG) signals during the encoding stage of VWM, which process visible information with strong neural coding. Whether color could be decoded from other VWM processing stages, especially the maintaining stage which processes invisible information, is still unknown. Here, we constructed an EEG color graph convolutional network model (ECo-GCN) to decode colors during different VWM stages. Based on graph convolutional networks, ECo-GCN considers the graph structure of EEG signals and may be more efficient in color decoding. We found that (1) decoding accuracies for colors during the encoding, early, and late maintaining stages were 81.58%, 79.36%, and 77.06%, respectively, exceeding those during the pre-stimuli stage (67.34%), and (2) the decoding accuracy during maintaining stage could predict participants’ memory performance. The results suggest that EEG signals during the maintaining stage may be more sensitive than behavioral measurement to predict the VWM performance of human, and ECo-GCN provides an effective approach to explore human cognitive function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
xionggege完成签到,获得积分10
6秒前
7秒前
翼_发布了新的文献求助10
8秒前
打打应助yyy采纳,获得30
9秒前
13秒前
19秒前
香蕉觅云应助感动保温杯采纳,获得10
21秒前
Toungoo完成签到,获得积分10
22秒前
w_tiger完成签到 ,获得积分10
23秒前
1122321发布了新的文献求助10
26秒前
天真彩虹完成签到 ,获得积分0
29秒前
32秒前
33秒前
打打应助1122321采纳,获得10
33秒前
感动保温杯完成签到,获得积分10
36秒前
37秒前
41秒前
42秒前
雪之谷完成签到 ,获得积分10
43秒前
44秒前
1122321发布了新的文献求助10
46秒前
47秒前
陆lyy发布了新的文献求助10
49秒前
55秒前
liujingyi发布了新的文献求助10
55秒前
魁梧的鲜花完成签到,获得积分10
58秒前
传奇3应助1122321采纳,获得10
1分钟前
彭于晏应助BVVD采纳,获得10
1分钟前
liujingyi完成签到,获得积分10
1分钟前
FashionBoy应助黎明将至采纳,获得10
1分钟前
1分钟前
无辜的泥猴桃完成签到,获得积分10
1分钟前
1122321发布了新的文献求助10
1分钟前
汉堡包应助1122321采纳,获得10
1分钟前
1分钟前
lyulyuch221发布了新的文献求助10
1分钟前
1分钟前
1分钟前
阔达的寒安完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401243
求助须知:如何正确求助?哪些是违规求助? 4520182
关于积分的说明 14079110
捐赠科研通 4433320
什么是DOI,文献DOI怎么找? 2434080
邀请新用户注册赠送积分活动 1426263
关于科研通互助平台的介绍 1404864