Reconfiguring magnetic resonances with the plasmonic phase-change material In3SbTe2

材料科学 等离子体子 光电子学 超材料 电介质 共振(粒子物理) 表面等离子共振 光子学 纳米光刻 偶极子 折射率 红外线的 光学 纳米技术 物理 纳米颗粒 制作 医学 替代医学 粒子物理学 病理 量子力学
作者
Lukas Conrads,Andreas Heßler,Konstantin Wirth,Matthias Wuttig,Thomas Taubner
标识
DOI:10.1117/12.2621291
摘要

For miniaturized active photonic components, resonance tuning of nanoantennas is essential. Phase-change materials (PCMs) have been established as prime candidates for non-volatile resonance tuning based on a change in refractive index [1]. Currently, a novel material class of switchable infrared plasmonic PCMs, like In3SbTe2 (IST), is emerging. Since IST can be locally optically switched between dielectric (amorphous phase) and metallic (crystalline phase) states in the whole infrared range, it becomes possible to directly change the geometry and size of nanoantennas to tune their infrared resonances by more than 4 µm. In particular, resonant nanostructures on sub-meta-atom level can be directly written, erased and modified in the thin IST film without cumbersome nanofabrication techniques. Additionally, prepatterned nanoantennas can be screened by a thin IST film resulting in an on/off functionality. With an IST patch two nanoantennas can be soldered together to shift the resonance [2]. Here, crystalline IST split-ring resonators (SRRs) are directly optically written and reconfigured in their arm size to continuously tune their magnetic dipole resonances over a range of 2.4 µm without changing their electric dipole resonances. The SRRs are further modified into crescents and J-antennas, which feature more complex resonance modes dependent on the polarization of the incident light. The ability of erasing and modifying the structures enables reversible and fast adaptions of the fabricated antenna geometries. In addition, the experimental results and the corresponding mode assignments are confirmed with full-wave simulations [3]. Our concepts are well-suited for rapid prototyping, speeding up workflows for engineering ultrathin, tunable, plasmonic devices for infrared nanophotonics, telecommunications or (bio)sensing. [1] Wuttig et al., Nature Photonics 11, 465 (2017) [2] Heßler et al., Nature Communications 12, 924 (2021) [3] Heßler, Conrads et al. Nano Letters (submitted) (2021)

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助feng采纳,获得10
1秒前
行行好吧完成签到 ,获得积分10
1秒前
2秒前
上官若男应助想昵称好难采纳,获得10
3秒前
褚蕴完成签到,获得积分10
3秒前
科研通AI2S应助zhou采纳,获得10
4秒前
4秒前
yu完成签到,获得积分10
4秒前
5秒前
温暖妙彤发布了新的文献求助10
6秒前
芝士发布了新的文献求助10
6秒前
李健应助飞盘通采纳,获得10
7秒前
7秒前
散步的小鸽子完成签到,获得积分10
7秒前
史蒂夫完成签到,获得积分10
7秒前
完美世界应助高振航采纳,获得10
7秒前
叮当发布了新的文献求助10
7秒前
Shawn发布了新的文献求助10
8秒前
123发布了新的文献求助10
8秒前
小二郎应助dongtan采纳,获得10
9秒前
9秒前
9秒前
一片叶子完成签到,获得积分10
9秒前
陈欣瑶完成签到,获得积分10
9秒前
xxfsx应助散步的小鸽子采纳,获得10
10秒前
英俊的咖啡豆完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
13秒前
13秒前
认真的薯片完成签到,获得积分20
13秒前
陈语宣关注了科研通微信公众号
14秒前
我是老大应助yuxun采纳,获得10
14秒前
yoyo发布了新的文献求助10
14秒前
白潇潇完成签到 ,获得积分10
14秒前
bkagyin应助HappyFlight9898采纳,获得30
14秒前
苏夏修完成签到,获得积分20
15秒前
陈欣瑶发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263612
求助须知:如何正确求助?哪些是违规求助? 4424086
关于积分的说明 13771924
捐赠科研通 4299145
什么是DOI,文献DOI怎么找? 2358888
邀请新用户注册赠送积分活动 1355182
关于科研通互助平台的介绍 1316415