Improved Productivity Using Deep Learning–assisted Reporting for Lumbar Spine MRI

医学 腰椎 放射科 分级(工程) 腰椎 磁共振成像 物理疗法 外科 土木工程 工程类
作者
Desmond Shi Wei Lim,Andrew Makmur,Lei Zhu,Wenqiao Zhang,Amanda J. L. Cheng,David Soon Yiew Sia,Sterling Ellis Eide,Han Yang Ong,Pooja Jagmohan,Wei Chuan Tan,Vanessa Meihui Khoo,Ying Mei Wong,Yee Liang Thian,Sangeetha Baskar,Ee Chin Teo,Diyaa Abdul Rauf Algazwi,Qai Ven Yap,Yiong Huak Chan,Jiong Hao Tan,Naresh Kumar,Beng Chin Ooi,Hiroshi Yoshioka,Swee Tian Quek,James Thomas Patrick Decourcy Hallinan
出处
期刊:Radiology [Radiological Society of North America]
卷期号:305 (1): 160-166 被引量:30
标识
DOI:10.1148/radiol.220076
摘要

Background Lumbar spine MRI studies are widely used for back pain assessment. Interpretation involves grading lumbar spinal stenosis, which is repetitive and time consuming. Deep learning (DL) could provide faster and more consistent interpretation. Purpose To assess the speed and interobserver agreement of radiologists for reporting lumbar spinal stenosis with and without DL assistance. Materials and Methods In this retrospective study, a DL model designed to assist radiologists in the interpretation of spinal canal, lateral recess, and neural foraminal stenoses on lumbar spine MRI scans was used. Randomly selected lumbar spine MRI studies obtained in patients with back pain who were 18 years and older over a 3-year period, from September 2015 to September 2018, were included in an internal test data set. Studies with instrumentation and scoliosis were excluded. Eight radiologists, each with 2–13 years of experience in spine MRI interpretation, reviewed studies with and without DL model assistance with a 1-month washout period. Time to diagnosis (in seconds) and interobserver agreement (using Gwet κ) were assessed for stenosis grading for each radiologist with and without the DL model and compared with test data set labels provided by an external musculoskeletal radiologist (with 32 years of experience) as the reference standard. Results Overall, 444 images in 25 patients (mean age, 51 years ± 20 [SD]; 14 women) were evaluated in a test data set. DL-assisted radiologists had a reduced interpretation time per spine MRI study, from a mean of 124–274 seconds (SD, 25–88 seconds) to 47–71 seconds (SD, 24–29 seconds) (P < .001). DL-assisted radiologists had either superior or equivalent interobserver agreement for all stenosis gradings compared with unassisted radiologists. DL-assisted general and in-training radiologists improved their interobserver agreement for four-class neural foraminal stenosis, with κ values of 0.71 and 0.70 (with DL) versus 0.39 and 0.39 (without DL), respectively (both P < .001). Conclusion Radiologists who were assisted by deep learning for interpretation of lumbar spinal stenosis on MRI scans showed a marked reduction in reporting time and superior or equivalent interobserver agreement for all stenosis gradings compared with radiologists who were unassisted by deep learning. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Hayashi in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归一完成签到 ,获得积分10
1秒前
Rain完成签到,获得积分10
1秒前
打打应助whh采纳,获得10
2秒前
2秒前
momo完成签到,获得积分10
3秒前
兴奋书雪完成签到,获得积分10
4秒前
星辰大海应助SRsora采纳,获得10
4秒前
金虎完成签到,获得积分10
4秒前
京兆尹完成签到,获得积分10
5秒前
lulu发布了新的文献求助10
6秒前
思源应助毛毛采纳,获得10
7秒前
treasure完成签到,获得积分10
8秒前
momo发布了新的文献求助10
8秒前
9秒前
傲娇诗完成签到,获得积分10
12秒前
tjbdlyh完成签到 ,获得积分10
13秒前
奎奎发布了新的文献求助10
15秒前
15秒前
柚子完成签到 ,获得积分10
17秒前
李昆朋完成签到,获得积分10
19秒前
19秒前
火星上的沛春完成签到,获得积分10
20秒前
20秒前
深情安青应助话哈哈采纳,获得10
20秒前
23秒前
SRsora发布了新的文献求助10
25秒前
CipherSage应助摩登灰太狼采纳,获得10
25秒前
25秒前
柔之完成签到,获得积分10
27秒前
UYang发布了新的文献求助10
27秒前
27秒前
leid完成签到 ,获得积分10
29秒前
七羽完成签到 ,获得积分10
29秒前
乐乐应助Richard采纳,获得10
29秒前
稳重乌冬面完成签到 ,获得积分10
29秒前
32秒前
Leee发布了新的文献求助10
32秒前
33秒前
SRsora发布了新的文献求助10
33秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780178
求助须知:如何正确求助?哪些是违规求助? 3325465
关于积分的说明 10223213
捐赠科研通 3040677
什么是DOI,文献DOI怎么找? 1668962
邀请新用户注册赠送积分活动 798878
科研通“疑难数据库(出版商)”最低求助积分说明 758634