Artificial intelligence-driven risk management for enhancing supply chain agility: A deep-learning-based dual-stage PLS-SEM-ANN analysis

结构方程建模 供应链 人工神经网络 构造(python库) 供应链管理 一致性(知识库) 对偶(语法数字) 风险管理 人工智能 偏最小二乘回归 计算机科学 知识管理 机器学习 业务 营销 艺术 文学类 财务 程序设计语言
作者
Lai‐Wan Wong,Garry Wei‐Han Tan,Keng‐Boon Ooi,Binshan Lin,Yogesh K. Dwivedi
出处
期刊:International Journal of Production Research [Taylor & Francis]
卷期号:62 (15): 5535-5555 被引量:128
标识
DOI:10.1080/00207543.2022.2063089
摘要

This study posits that the use of artificial intelligence (AI) enables supply chains (SCs) to dynamically react to volatile environments, and alleviate potentially costly decision-makings for small-medium enterprises (SMEs). Building on a resource-based view, this work examines the impact of AI on SC risk management for SMEs. A structural model comprising of AI-risk management capabilities, SC re-engineering capabilities and supply chain agility (SCA) was developed and tested based on data collected from executives, managers and senior managers of SMEs The main methodological approach used in this study is partial least squares-based structural equation modelling (PLS-SEM) and artificial neural network (ANN). The results identified the use of AI for risk management influences SC re-engineering capabilities and agility. Re-engineering capabilities further affect and mediate agility. PLS-SEM and ANN were compared and the results revealed consistency for models A and B. Current levels of demand uncertainties in the SC challenges managers in making complex trade-off decisions that require huge management resources in very limited time. With AI, it is possible to model various scenarios to answer crucial questions that archaic infrastructures are not able to. This study combines a multi-construct agility concept and identified non-linear relationships in the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助Enma采纳,获得10
刚刚
笨笨歌曲完成签到,获得积分10
刚刚
轻松的飞阳完成签到 ,获得积分10
1秒前
qq158014169发布了新的文献求助10
2秒前
sue402完成签到,获得积分10
3秒前
小饼干完成签到,获得积分10
3秒前
li发布了新的文献求助10
3秒前
彩色毛巾发布了新的文献求助10
3秒前
科研通AI5应助kumarr采纳,获得10
4秒前
小白发布了新的文献求助10
4秒前
4秒前
乐乐应助llfire采纳,获得10
5秒前
漂亮天真完成签到,获得积分10
5秒前
letter完成签到,获得积分20
5秒前
笨笨小蚂蚁完成签到 ,获得积分10
5秒前
6秒前
wangxiaobin完成签到,获得积分10
6秒前
7秒前
7秒前
TUC123发布了新的文献求助10
7秒前
8秒前
8秒前
搜集达人应助du采纳,获得10
9秒前
9秒前
薛得豪完成签到,获得积分10
11秒前
wangxiaobin发布了新的文献求助10
11秒前
Jasper应助搞怪的富采纳,获得10
11秒前
李大龙完成签到,获得积分10
11秒前
11秒前
12秒前
郭mm发布了新的文献求助10
13秒前
13秒前
多云转晴发布了新的文献求助10
14秒前
材料打工人完成签到 ,获得积分10
15秒前
16秒前
16秒前
fmwang完成签到,获得积分10
16秒前
QIQI完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4474812
求助须知:如何正确求助?哪些是违规求助? 3933433
关于积分的说明 12203844
捐赠科研通 3587927
什么是DOI,文献DOI怎么找? 1972587
邀请新用户注册赠送积分活动 1010287
科研通“疑难数据库(出版商)”最低求助积分说明 903931