Combining multi-indicators with machine-learning algorithms for maize yield early prediction at the county-level in China

随机森林 适应性 产量(工程) 稳健性(进化) 梯度升压 粮食安全 作物产量 机器学习 数学 过度拟合 统计 计算机科学 农业 农学 地理 生态学 人工神经网络 材料科学 考古 冶金 生物化学 化学 生物 基因
作者
Minghan Cheng,Josep Peñuelas,Matthew F. McCabe,Clement Atzberger,Xiyun Jiao,Wenbin Wu,Xiuliang Jin
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:323: 109057-109057 被引量:69
标识
DOI:10.1016/j.agrformet.2022.109057
摘要

The accurate and timely prediction of crop yield at a large scale is important for food security and the development of agricultural policy. An adaptable and robust method for estimating maize yield for the entire territory of China, however, is currently not available. The inherent trade-off between early estimates of yield and the accuracy of yield prediction also remains a confounding issue. To explore these challenges, we employ indicators such as GPP, ET, surface temperature (Ts), LAI, soil properties and maize phenological information with random forest regression (RFR) and gradient boosting decision tree (GBDT) machine learning approaches to provide maize yield estimates within China. The aims were to: (1) evaluate the accuracy of maize yield prediction obtained from multimodal data analysis using machine-learning; (2) identify the optimal period for estimating yield; and (3) determine the spatial robustness and adaptability of the proposed method. The results can be summarized as: (1) RFR estimated maize yield more accurately than GBDT; (2) Ts was the best single indicator for estimating yield, while the combination of GPP, Ts, ET and LAI proved best when multi-indicators were used (R2 = 0.77 and rRMSE = 16.15% for the RFR); (3) the prediction accuracy was lower with earlier lead time but remained relatively high within at least 24 days before maturity (R2 > 0.77 and rRMSE <16.92%); and (4) combining machine-learning algorithms with multi-indicators demonstrated a capacity to cope with the spatial heterogeneity. Overall, this study provides a reliable reference for managing agricultural production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
粗犷的小凡完成签到,获得积分10
刚刚
iiiiiuy完成签到,获得积分10
刚刚
wjh完成签到,获得积分10
1秒前
写作中关注了科研通微信公众号
1秒前
mirror完成签到,获得积分10
2秒前
哎嘿发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
sugar完成签到,获得积分10
3秒前
解惑大师发布了新的文献求助10
3秒前
3秒前
4秒前
跳跃的冷卉完成签到 ,获得积分10
4秒前
学术白银完成签到,获得积分10
4秒前
科研通AI6应助孙凯欣采纳,获得10
4秒前
casaboy完成签到,获得积分10
4秒前
一一2完成签到,获得积分10
4秒前
Jasper应助123采纳,获得10
4秒前
4秒前
希望天下0贩的0应助dbhfdgsh采纳,获得10
5秒前
5秒前
cheese发布了新的文献求助10
5秒前
5秒前
5秒前
淡淡土豆应助hw采纳,获得10
6秒前
淡淡土豆应助天道酬勤采纳,获得10
6秒前
纤指细轻捻完成签到,获得积分10
6秒前
6秒前
shelley完成签到,获得积分10
6秒前
魁梧的火龙果完成签到,获得积分10
6秒前
阳光的晓槐完成签到,获得积分10
6秒前
Echo发布了新的文献求助10
7秒前
7秒前
7秒前
xqing完成签到,获得积分10
7秒前
生椰拿铁完成签到 ,获得积分10
7秒前
July完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516814
求助须知:如何正确求助?哪些是违规求助? 4609871
关于积分的说明 14518264
捐赠科研通 4546672
什么是DOI,文献DOI怎么找? 2491314
邀请新用户注册赠送积分活动 1473067
关于科研通互助平台的介绍 1444924