粒子群优化
元启发式
多群优化
算法
并行元启发式
模糊控制系统
模糊逻辑
计算机科学
数学优化
伺服机构
数学
控制理论(社会学)
工程类
人工智能
控制(管理)
控制工程
作者
Claudiu Pozna,Radu Precup,Ernő Horváth,Emil M. Petriu
标识
DOI:10.1109/tfuzz.2022.3146986
摘要
This article presents a hybrid metaheuristic optimization algorithm that combines particle filter (PF) and particle swarm optimization (PSO) algorithms. The new PF–PSO algorithm consists of two steps: the first generates randomly the particle population;and the second zooms the search domain. An application of this algorithm to the optimal tuning of proportional-integral-fuzzy controllers for the position control of a family of integral-type servo systems is then presented as a second contribution. The reduction in PF–PSO algorithm's cost function allows for reduced energy consumption of the fuzzy control system. A comparison with other metaheuristic algorithms on canonical test functions and experimental results are presented at the end of this article.
科研通智能强力驱动
Strongly Powered by AbleSci AI