Improving Sales Forecasting Accuracy: A Tensor Factorization Approach with Demand Awareness

计算机科学 杠杆(统计) 需求预测 背景(考古学) 运筹学 计量经济学 机器学习 经济 数学 生物 古生物学
作者
Xuan Bi,Gediminas Adomavičius,William Li,Annie Qu
出处
期刊:Informs Journal on Computing 卷期号:34 (3): 1644-1660 被引量:25
标识
DOI:10.1287/ijoc.2021.1147
摘要

Because of the accessibility of big data collections from consumers, products, and stores, advanced sales forecasting capabilities have drawn great attention from many businesses, especially those in retail, because of the importance of forecasting in decision making. Improvement of forecasting accuracy, even by a small percentage, may have a substantial impact on companies’ production and financial planning, marketing strategies, inventory controls, and supply chain management. Specifically, our research goal is to forecast the sales of each product in each store in the near future. Motivated by tensor factorization methodologies for context-aware recommender systems, we propose a novel approach called the advanced temporal latent factor approach to sales forecasting, or ATLAS for short, which achieves accurate and individualized predictions for sales by building a single tensor factorization model across multiple stores and products. Our contribution is a combination of a tensor framework (to leverage information across stores and products), a new regularization function (to incorporate demand dynamics), and extrapolation of the tensor into future time periods using state-of-the-art statistical (seasonal autoregressive integrated moving-average models) and machine-learning (recurrent neural networks) models. The advantages of ATLAS are demonstrated on eight product category data sets collected by Information Resources, Inc., where we analyze a total of 165 million weekly sales transactions of over 15,560 products from more than 1,500 grocery stores. Summary of Contribution: Sales forecasting has been a task of long-standing importance. Accurate sales forecasting provides critical managerial implications for companies’ decision making and operations. Improvement of forecasting accuracy may have a substantial impact on companies’ production planning, marketing strategies, inventory controls, and supply chain management, among other things. This paper proposes a novel computational (machine-learning-based) approach to sales forecasting and thus is positioned directly at the intersection of computing and business/operations research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助007采纳,获得10
2秒前
4秒前
namelorna发布了新的文献求助10
6秒前
科研通AI2S应助巴达天使采纳,获得10
7秒前
子凡应助科研通管家采纳,获得10
7秒前
HEIKU应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
8秒前
子凡应助科研通管家采纳,获得10
8秒前
晴天发布了新的文献求助10
8秒前
9秒前
bkagyin应助不远采纳,获得10
13秒前
shapvalue发布了新的文献求助10
14秒前
闾丘青易完成签到,获得积分10
18秒前
20秒前
画晴完成签到,获得积分10
21秒前
动漫大师发布了新的文献求助10
22秒前
22秒前
欣慰土豆完成签到 ,获得积分0
22秒前
冰魂应助huang采纳,获得10
22秒前
缥缈太清完成签到,获得积分10
23秒前
科研通AI2S应助灵巧的语兰采纳,获得10
24秒前
25秒前
不远发布了新的文献求助10
25秒前
26秒前
FashionBoy应助心碎的黄焖鸡采纳,获得10
26秒前
27秒前
surxwy发布了新的文献求助10
27秒前
28秒前
ANON_TOKYO发布了新的文献求助30
30秒前
英姑应助刘胖胖采纳,获得10
30秒前
five发布了新的文献求助10
32秒前
gao发布了新的文献求助10
32秒前
华仔应助yk123采纳,获得10
32秒前
35秒前
35秒前
午见千山应助中恐采纳,获得10
37秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781766
求助须知:如何正确求助?哪些是违规求助? 3327359
关于积分的说明 10230631
捐赠科研通 3042226
什么是DOI,文献DOI怎么找? 1669897
邀请新用户注册赠送积分活动 799391
科研通“疑难数据库(出版商)”最低求助积分说明 758792