已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving Sales Forecasting Accuracy: A Tensor Factorization Approach with Demand Awareness

计算机科学 杠杆(统计) 需求预测 背景(考古学) 运筹学 计量经济学 机器学习 经济 数学 生物 古生物学
作者
Xuan Bi,Gediminas Adomavičius,William Li,Annie Qu
出处
期刊:Informs Journal on Computing 卷期号:34 (3): 1644-1660 被引量:25
标识
DOI:10.1287/ijoc.2021.1147
摘要

Because of the accessibility of big data collections from consumers, products, and stores, advanced sales forecasting capabilities have drawn great attention from many businesses, especially those in retail, because of the importance of forecasting in decision making. Improvement of forecasting accuracy, even by a small percentage, may have a substantial impact on companies’ production and financial planning, marketing strategies, inventory controls, and supply chain management. Specifically, our research goal is to forecast the sales of each product in each store in the near future. Motivated by tensor factorization methodologies for context-aware recommender systems, we propose a novel approach called the advanced temporal latent factor approach to sales forecasting, or ATLAS for short, which achieves accurate and individualized predictions for sales by building a single tensor factorization model across multiple stores and products. Our contribution is a combination of a tensor framework (to leverage information across stores and products), a new regularization function (to incorporate demand dynamics), and extrapolation of the tensor into future time periods using state-of-the-art statistical (seasonal autoregressive integrated moving-average models) and machine-learning (recurrent neural networks) models. The advantages of ATLAS are demonstrated on eight product category data sets collected by Information Resources, Inc., where we analyze a total of 165 million weekly sales transactions of over 15,560 products from more than 1,500 grocery stores. Summary of Contribution: Sales forecasting has been a task of long-standing importance. Accurate sales forecasting provides critical managerial implications for companies’ decision making and operations. Improvement of forecasting accuracy may have a substantial impact on companies’ production planning, marketing strategies, inventory controls, and supply chain management, among other things. This paper proposes a novel computational (machine-learning-based) approach to sales forecasting and thus is positioned directly at the intersection of computing and business/operations research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xbb发布了新的文献求助10
刚刚
kk发布了新的文献求助10
4秒前
Rosyyyy发布了新的文献求助10
4秒前
孤芳自赏IrisKing完成签到 ,获得积分10
7秒前
麻瓜发布了新的文献求助10
12秒前
14秒前
卧镁铀钳完成签到 ,获得积分10
19秒前
Xiaojiu完成签到 ,获得积分10
22秒前
寇婧怡完成签到 ,获得积分10
35秒前
feihua1完成签到 ,获得积分10
37秒前
研友_Z6Qrbn完成签到,获得积分10
44秒前
123123完成签到 ,获得积分10
51秒前
李文霄完成签到 ,获得积分10
53秒前
华仔应助无辜笑容采纳,获得10
53秒前
Cakeat完成签到,获得积分10
1分钟前
123完成签到 ,获得积分10
1分钟前
机灵的忆梅完成签到 ,获得积分10
1分钟前
ZTLlele完成签到 ,获得积分10
1分钟前
xutong de完成签到,获得积分10
1分钟前
充电宝应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
1分钟前
赘婿应助tomorrow采纳,获得10
1分钟前
诚心的信封完成签到 ,获得积分10
1分钟前
糖伯虎完成签到 ,获得积分10
1分钟前
李颖雪完成签到,获得积分20
1分钟前
kk完成签到,获得积分10
1分钟前
kw98完成签到 ,获得积分10
1分钟前
1分钟前
Delight完成签到 ,获得积分10
1分钟前
追寻极光完成签到,获得积分10
1分钟前
星辰大海应助lily采纳,获得10
1分钟前
个性紫完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
顺利的乐枫完成签到 ,获得积分10
2分钟前
领导范儿应助Liolsy采纳,获得10
2分钟前
田様应助tomorrow采纳,获得10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949944
求助须知:如何正确求助?哪些是违规求助? 3495156
关于积分的说明 11075621
捐赠科研通 3225764
什么是DOI,文献DOI怎么找? 1783177
邀请新用户注册赠送积分活动 867514
科研通“疑难数据库(出版商)”最低求助积分说明 800835