Development and Implementation of an Online OSPE Test Bank Graded by Artificial Intelligence

指导 分级(工程) 考试(生物学) 计算机科学 医学教育 心理学 人工智能 医学 工程类 生物 土木工程 古生物学 心理治疗师
作者
Varun Coelho,Lana Amoudi,Gerald Segovia,Pariya Vejdani,Meghna Varambally,Tracy Wang,Alexander K. Ball,Ilana Bayer,J Bernard,Peter B. Helli,Joshua D. Mitchell,Courtney Pitt,Anthony N. Saraco,O’Llenecia S. Walker,Bruce Wainman
出处
期刊:The FASEB Journal [Wiley]
卷期号:36 (S1)
标识
DOI:10.1096/fasebj.2022.36.s1.r6092
摘要

The development of online anatomy education has rapidly accelerated during the COVID-19 pandemic. This shift to the online world has mainly been focused on the delivery of content, while testing anatomical knowledge has proven to be more challenging, particularly for objective structured practical exams (OSPEs, also known as "spot tests" or "practical exams"). Online resources for OSPEs are uncommon compared to the extensive banks of multiple-choice questions available. Another issue is that whether virtual or in-person, grading OSPEs is challenging and time consuming. Recent research in our laboratory has suggested that machine learning algorithms, using decision trees, can be trained to mark OSPEs with a >95% accuracy. Building on these findings, the goal of this project is to create a virtual OSPE bank, train the AI to grade OSPEs, and develop an application with automated AI grading to act as a resource for students studying anatomy and physiology. Currently, we have written over 120 OSPE question sets using images from the Bassett Collection, the UBC Neuroanatomy collection, and images developed at the Education Program in Anatomy at McMaster University. The questions and answers were initially developed by senior undergraduate students, with coaching from faculty and staff familiar with OSPE generation acting as experts. The questions were then collectively reviewed by the students before undergoing two independent reviews by the experts. After revision, a final blind review of the questions was undertaken by a third expert to ensure validity and accuracy. These questions are being made available on the undergraduate anatomy and physiology course learning management system (LMS), Avenue to Learn. On this LMS, students will be able to use the questions for OSPE practice and answers will be available in the traditional manner. The answers given by the students and graded by the faculty will be collected and analyzed to determine the difficulty and discrimination of the questions. The data and analyses will be used to refine additional OSPEs, as well as refine the AI marking tool for the virtual OSPE application. Our hypothesis is that by providing instant and accurate feedback on valid and accurate questions, course evaluations and performance on OSPEs will improve. The research group is actively searching for collaborators willing to generate and review additional OSPE questions to expand the question bank and improve the AI marking tool.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YF完成签到,获得积分10
1秒前
掸棉花完成签到,获得积分20
2秒前
llliz发布了新的文献求助10
2秒前
2秒前
mzf完成签到,获得积分10
4秒前
qiqi1111发布了新的文献求助10
4秒前
5秒前
SHI完成签到,获得积分10
5秒前
房山芙完成签到,获得积分10
7秒前
awen完成签到,获得积分20
7秒前
消消消消气完成签到 ,获得积分10
8秒前
8秒前
zj发布了新的文献求助10
9秒前
超级悲伤小吴完成签到,获得积分10
12秒前
13秒前
13秒前
穆一手完成签到 ,获得积分10
15秒前
chengxiping完成签到,获得积分10
17秒前
流年完成签到,获得积分20
17秒前
hhhh_xt发布了新的文献求助10
18秒前
卓涵柏发布了新的文献求助10
19秒前
zxx完成签到,获得积分10
20秒前
老张完成签到,获得积分20
20秒前
毛竹发布了新的文献求助10
20秒前
20秒前
awen关注了科研通微信公众号
20秒前
张先伟完成签到,获得积分10
21秒前
狂奔的蜗牛完成签到,获得积分10
21秒前
22秒前
mzf发布了新的文献求助10
23秒前
5度转角应助卓涵柏采纳,获得10
25秒前
jsdiohfsiodhg发布了新的文献求助10
26秒前
26秒前
28秒前
加减乘除发布了新的文献求助10
28秒前
29秒前
29秒前
蛇從革完成签到,获得积分0
29秒前
ao0o0o0发布了新的文献求助10
32秒前
hehsk完成签到,获得积分10
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
Grammar in Action:Building comprehensive grammars of talk-in-interaction 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4164241
求助须知:如何正确求助?哪些是违规求助? 3699716
关于积分的说明 11681370
捐赠科研通 3389303
什么是DOI,文献DOI怎么找? 1858730
邀请新用户注册赠送积分活动 919235
科研通“疑难数据库(出版商)”最低求助积分说明 831988