免疫系统
纳米技术
疾病
纳米材料
计算机科学
免疫学
医学
材料科学
内科学
作者
Jiulong Li,Xingfa Gao,Yuguang Wang,Tian Xia,Liang Yan,Huan Meng
出处
期刊:Matter
[Elsevier BV]
日期:2022-04-01
卷期号:5 (4): 1162-1191
被引量:15
标识
DOI:10.1016/j.matt.2022.03.005
摘要
•We review the recent advances in molecular pathways of ENM-induced immune responses •We outline how ENMs' properties impact ENMs' contact with immune systems •We discuss how to design ENM properties for effective immunomodulation therapy •We discuss the opportunities of the next-stage immunological nanobiology research Engineered nanomaterials (ENMs) are widely used in industrial, commercial, and medical fields due to their unique physicochemical properties and diverse functional advantages. Human exposure or direct contact with ENMs via various routes, including dermal, inhalation, and systemic administration, may allow ENMs to interact with immune systems, leading to immunostimulation or immunosuppression outcomes depending on antigen properties. The actions of various immunological responses and how ENMs' intrinsic properties impact immune responses are fascinating but under-investigated. Herein, we systemically review state-of-the-art advances in various molecular mechanisms of ENM-induced immunological responses to outline the critical roles of material properties on immunity. Through the growing awareness of nano quantitative structure-activity relationship (QSAR), we further conceptualize how to utilize ENMs’ immunomodulatory properties to develop safe, precise, and effective immunomodulation strategies based on high throughput and predictive discovery paradigms. We also discuss the challenges and opportunities for clinical translation using nano-enabled immune modulation for disease treatment. Engineered nanomaterials (ENMs) are widely used in industrial, commercial, and medical fields due to their unique physicochemical properties and diverse functional advantages. Human exposure or direct contact with ENMs via various routes, including dermal, inhalation, and systemic administration, may allow ENMs to interact with immune systems, leading to immunostimulation or immunosuppression outcomes depending on antigen properties. The actions of various immunological responses and how ENMs' intrinsic properties impact immune responses are fascinating but under-investigated. Herein, we systemically review state-of-the-art advances in various molecular mechanisms of ENM-induced immunological responses to outline the critical roles of material properties on immunity. Through the growing awareness of nano quantitative structure-activity relationship (QSAR), we further conceptualize how to utilize ENMs’ immunomodulatory properties to develop safe, precise, and effective immunomodulation strategies based on high throughput and predictive discovery paradigms. We also discuss the challenges and opportunities for clinical translation using nano-enabled immune modulation for disease treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI