已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Label-Free Virtual HER2 Immunohistochemical Staining of Breast Tissue using Deep Learning

染色 免疫组织化学 病理 乳腺癌 污渍 医学 癌症 内科学
作者
Bijie Bai,Hongda Wang,Yuzhu Li,Kevin de Haan,Francesco Colonnese,Yujie Wan,Jingyi Zuo,Ngan B. Doan,Xiaoran Zhang,Yijie Zhang,Jingxi Li,Xilin Yang,Wenjie Dong,Morgan A. Darrow,Elham Kamangar,Han Sung Lee,Yair Rivenson,Aydogan Özcan
出处
期刊:BME frontiers [American Association for the Advancement of Science]
卷期号:2022 被引量:27
标识
DOI:10.34133/2022/9786242
摘要

The immunohistochemical (IHC) staining of the human epidermal growth factor receptor 2 (HER2) biomarker is widely practiced in breast tissue analysis, preclinical studies, and diagnostic decisions, guiding cancer treatment and investigation of pathogenesis. HER2 staining demands laborious tissue treatment and chemical processing performed by a histotechnologist, which typically takes one day to prepare in a laboratory, increasing analysis time and associated costs. Here, we describe a deep learning-based virtual HER2 IHC staining method using a conditional generative adversarial network that is trained to rapidly transform autofluorescence microscopic images of unlabeled/label-free breast tissue sections into bright-field equivalent microscopic images, matching the standard HER2 IHC staining that is chemically performed on the same tissue sections. The efficacy of this virtual HER2 staining framework was demonstrated by quantitative analysis, in which three board-certified breast pathologists blindly graded the HER2 scores of virtually stained and immunohistochemically stained HER2 whole slide images (WSIs) to reveal that the HER2 scores determined by inspecting virtual IHC images are as accurate as their immunohistochemically stained counterparts. A second quantitative blinded study performed by the same diagnosticians further revealed that the virtually stained HER2 images exhibit a comparable staining quality in the level of nuclear detail, membrane clearness, and absence of staining artifacts with respect to their immunohistochemically stained counterparts. This virtual HER2 staining framework bypasses the costly, laborious, and time-consuming IHC staining procedures in laboratory and can be extended to other types of biomarkers to accelerate the IHC tissue staining used in life sciences and biomedical workflow.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
3秒前
FashionBoy应助king采纳,获得10
4秒前
外向太阳完成签到,获得积分10
6秒前
wop111发布了新的文献求助10
7秒前
靓丽芙蓉发布了新的文献求助10
8秒前
loreya发布了新的文献求助10
8秒前
浮游应助虚心怜阳采纳,获得10
8秒前
11秒前
11秒前
wanci应助谭代涛采纳,获得10
12秒前
Lizhenyu关注了科研通微信公众号
14秒前
xu完成签到 ,获得积分10
15秒前
健康的涔完成签到,获得积分10
15秒前
精明向梦发布了新的文献求助10
16秒前
霁星河完成签到,获得积分10
17秒前
我是老大应助清晨牛采纳,获得10
17秒前
18秒前
19秒前
3号球衣发布了新的文献求助10
21秒前
科目三应助多情的初蓝采纳,获得10
21秒前
烟花应助bae采纳,获得10
22秒前
于丽萍完成签到 ,获得积分10
22秒前
22秒前
希望天下0贩的0应助hfguwn采纳,获得10
23秒前
云一朵完成签到,获得积分10
24秒前
Orange应助尊敬的芷卉采纳,获得10
24秒前
初夏发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
loreya完成签到,获得积分10
26秒前
迷你的冰颜完成签到,获得积分10
26秒前
27秒前
27秒前
Lucas应助初夏采纳,获得10
30秒前
ChloeD完成签到,获得积分10
30秒前
NexusExplorer应助科研通管家采纳,获得10
30秒前
30秒前
赘婿应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5041751
求助须知:如何正确求助?哪些是违规求助? 4272467
关于积分的说明 13321046
捐赠科研通 4085146
什么是DOI,文献DOI怎么找? 2234994
邀请新用户注册赠送积分活动 1242582
关于科研通互助平台的介绍 1169327