CT-based radiomics analysis of different machine learning models for differentiating benign and malignant parotid tumors

医学 无线电技术 逻辑回归 单变量 接收机工作特性 放射科 队列 神经组阅片室 人工智能 机器学习 多元统计 内科学 计算机科学 神经学 精神科
作者
Yunlin Zheng,Di Zhou,Huan Liu,Ming Wen
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (10): 6953-6964 被引量:88
标识
DOI:10.1007/s00330-022-08830-3
摘要

ObjectivesThis study aimed to explore and validate the value of different radiomics models for differentiating benign and malignant parotid tumors preoperatively.MethodsThis study enrolled 388 patients with pathologically confirmed parotid tumors (training cohort: n = 272; test cohort: n = 116). Radiomics features were extracted from CT images of the non-enhanced, arterial, and venous phases. After dimensionality reduction and selection, radiomics models were constructed by logistic regression (LR), support vector machine (SVM), and random forest (RF). The best radiomic model was selected by using ROC curve analysis. Univariate and multivariable logistic regression was applied to analyze clinical-radiological characteristics and identify variables for developing a clinical model. A combined model was constructed by incorporating radiomics and clinical features. Model performances were assessed by ROC curve analysis, and decision curve analysis (DCA) was used to estimate the models’ clinical values.ResultsIn total, 2874 radiomic features were extracted from CT images. Ten radiomics features were deemed valuable by dimensionality reduction and selection. Among radiomics models, the SVM model showed greater predictive efficiency and robustness, with AUCs of 0.844 in the training cohort; and 0.840 in the test cohort. Ultimate clinical features constructed a clinical model. The discriminatory capability of the combined model was the best (AUC, training cohort: 0.904; test cohort: 0.854). Combined model DCA revealed optimal clinical efficacy.ConclusionsThe combined model incorporating radiomics and clinical features exhibited excellent ability to distinguish benign and malignant parotid tumors, which may provide a noninvasive and efficient method for clinical decision making.Key Points The current study is the first to compare the value of different radiomics models (LR, SVM, and RF) for preoperative differentiation of benign and malignant parotid tumors. A CT-based combined model, integrating clinical-radiological and radiomics features, is conducive to distinguishing benign and malignant parotid tumors, thereby improving diagnostic performance and aiding treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇的八宝粥完成签到,获得积分10
1秒前
xiao米关注了科研通微信公众号
1秒前
Freddie完成签到,获得积分10
1秒前
mncvjs发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
充电宝应助碧蓝安露采纳,获得10
4秒前
EC发布了新的文献求助10
4秒前
4秒前
好好学习完成签到,获得积分0
4秒前
落后的夜阑完成签到,获得积分10
4秒前
超级手套完成签到,获得积分10
5秒前
niNe3YUE应助HJ皎采纳,获得10
5秒前
Hello应助Ren采纳,获得10
5秒前
5秒前
沉甸甸完成签到,获得积分10
5秒前
Hunter1023发布了新的文献求助10
6秒前
胡图图完成签到 ,获得积分10
6秒前
三石完成签到 ,获得积分10
6秒前
执着谷兰发布了新的文献求助30
6秒前
爱莉希雅完成签到,获得积分10
6秒前
7秒前
阿部完成签到,获得积分10
7秒前
fy12345完成签到,获得积分10
7秒前
maorongfu456发布了新的文献求助30
7秒前
BowieHuang应助ROOT采纳,获得10
7秒前
Tal完成签到,获得积分10
7秒前
ug发布了新的文献求助10
8秒前
8秒前
mncvjs完成签到,获得积分20
9秒前
9秒前
yuliuism应助jack采纳,获得20
10秒前
10秒前
结实山水完成签到 ,获得积分10
10秒前
尔尔发布了新的文献求助10
10秒前
隐形的柜子完成签到,获得积分10
10秒前
神山识完成签到,获得积分10
10秒前
13秒前
aodilee完成签到,获得积分10
13秒前
妮妮完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635723
求助须知:如何正确求助?哪些是违规求助? 4738819
关于积分的说明 14991703
捐赠科研通 4793672
什么是DOI,文献DOI怎么找? 2560706
邀请新用户注册赠送积分活动 1520569
关于科研通互助平台的介绍 1480902