亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT-based radiomics analysis of different machine learning models for differentiating benign and malignant parotid tumors

医学 无线电技术 逻辑回归 单变量 接收机工作特性 放射科 队列 神经组阅片室 人工智能 机器学习 多元统计 内科学 计算机科学 神经学 精神科
作者
Yunlin Zheng,Di Zhou,Huan Liu,Ming Wen
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (10): 6953-6964 被引量:73
标识
DOI:10.1007/s00330-022-08830-3
摘要

ObjectivesThis study aimed to explore and validate the value of different radiomics models for differentiating benign and malignant parotid tumors preoperatively.MethodsThis study enrolled 388 patients with pathologically confirmed parotid tumors (training cohort: n = 272; test cohort: n = 116). Radiomics features were extracted from CT images of the non-enhanced, arterial, and venous phases. After dimensionality reduction and selection, radiomics models were constructed by logistic regression (LR), support vector machine (SVM), and random forest (RF). The best radiomic model was selected by using ROC curve analysis. Univariate and multivariable logistic regression was applied to analyze clinical-radiological characteristics and identify variables for developing a clinical model. A combined model was constructed by incorporating radiomics and clinical features. Model performances were assessed by ROC curve analysis, and decision curve analysis (DCA) was used to estimate the models’ clinical values.ResultsIn total, 2874 radiomic features were extracted from CT images. Ten radiomics features were deemed valuable by dimensionality reduction and selection. Among radiomics models, the SVM model showed greater predictive efficiency and robustness, with AUCs of 0.844 in the training cohort; and 0.840 in the test cohort. Ultimate clinical features constructed a clinical model. The discriminatory capability of the combined model was the best (AUC, training cohort: 0.904; test cohort: 0.854). Combined model DCA revealed optimal clinical efficacy.ConclusionsThe combined model incorporating radiomics and clinical features exhibited excellent ability to distinguish benign and malignant parotid tumors, which may provide a noninvasive and efficient method for clinical decision making.Key Points The current study is the first to compare the value of different radiomics models (LR, SVM, and RF) for preoperative differentiation of benign and malignant parotid tumors. A CT-based combined model, integrating clinical-radiological and radiomics features, is conducive to distinguishing benign and malignant parotid tumors, thereby improving diagnostic performance and aiding treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丘比特应助体贴花卷采纳,获得10
6秒前
伶俐鸿发布了新的文献求助10
8秒前
alex_zhao完成签到,获得积分10
25秒前
伶俐鸿完成签到,获得积分20
28秒前
34秒前
doudou完成签到 ,获得积分10
41秒前
金乌完成签到 ,获得积分10
54秒前
完美世界应助zgf采纳,获得10
56秒前
义气珩完成签到,获得积分10
58秒前
1分钟前
1分钟前
123456789发布了新的文献求助10
1分钟前
1分钟前
juejue333完成签到,获得积分10
1分钟前
lumangxiaozi发布了新的文献求助10
1分钟前
1分钟前
1分钟前
123456789完成签到,获得积分10
1分钟前
onion完成签到,获得积分10
1分钟前
lumangxiaozi完成签到,获得积分10
1分钟前
shentaii完成签到,获得积分10
1分钟前
1分钟前
七七八八完成签到,获得积分10
1分钟前
1分钟前
似水流年发布了新的文献求助10
1分钟前
小草发布了新的文献求助10
1分钟前
可靠的雪碧完成签到,获得积分10
1分钟前
1分钟前
旺仔同学完成签到,获得积分10
1分钟前
1分钟前
李李原上草完成签到 ,获得积分10
2分钟前
Ther完成签到 ,获得积分10
2分钟前
2分钟前
乐乐应助Ni采纳,获得10
2分钟前
小草发布了新的文献求助10
2分钟前
2分钟前
li发布了新的文献求助10
2分钟前
徐zhipei完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
How Maoism Was Made: Reconstructing China, 1949-1965 1200
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 9th 400
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4391605
求助须知:如何正确求助?哪些是违规求助? 3882120
关于积分的说明 12089739
捐赠科研通 3526010
什么是DOI,文献DOI怎么找? 1934962
邀请新用户注册赠送积分活动 975939
科研通“疑难数据库(出版商)”最低求助积分说明 873682