制氢
泥浆
阳极
电解
煤浆
电化学
氢
煤
铁
无机化学
化学
化学工程
电解水
材料科学
电极
有机化学
电解质
物理化学
工程类
复合材料
作者
Niyi Olukayode,Weijing Yang,Kang Xiang,Shenrong Ye,Zhigang Sun,Zhenfei Han,Sheng Sui
出处
期刊:ACS omega
[American Chemical Society]
日期:2022-02-23
卷期号:7 (9): 7865-7873
被引量:5
标识
DOI:10.1021/acsomega.1c06759
摘要
Hydrogen production from the electrolysis of coal slurry is a promising approach under the condition of low voltage (0.8-1.2 V) and medium temperature. However, the rate of hydrogen production is slugged by poor anode kinetics, under an electrochemical condition that results from the collision of the coal particles with the anode surface. This paper reports a novel process that consists of two steps: the oxidation of the coal slurry by ferric ions(III) in a hydrothermal reactor at a temperature of 120-160 °C and the electro-oxidation of ferric ions(II) in the electrochemical cell to produce hydrogen. This technique circumvents the technical issues experienced in the conventional coal slurry electrolysis process by adopting a two-step process consisting of solid-liquid reactions instead of solid-solid reactions. This indirect oxidation process produced a current density of 120 mA/cm2 at room temperature and a voltage of 1 V, which is higher than the values reported in the conventional processes. An investigation of the oxidation mechanism was carried out via scanning electron microscopy, Fourier-transform infrared spectroscopy and elemental analysis. The results obtained showed that the oxidation of coal by ferric ions occurs from the surface to the inner parts of the coal particles in a stepwise manner. It was also revealed that the ferric ions in the media increased the active interfaces both of the coal particles and of the anode electrode. This explains the high hydrogen production rate obtained from this process. This novel discovery can pave the way for the commercialization of coal slurry electrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI