Efficient Recognition and Automatic Sorting Technology of Waste Textiles Based on Online Near infrared Spectroscopy and Convolutional Neural Network

卷积神经网络 人工智能 分类 红外线的 模式识别(心理学) 计算机科学 光谱学 红外光谱学 人工神经网络 化学 算法 物理 光学 有机化学 量子力学
作者
Wenqian Du,Jiahui Zheng,Wenxia Li,Zhengdong Liu,Huaping Wang,Han Xi
出处
期刊:Resources Conservation and Recycling [Elsevier BV]
卷期号:180: 106157-106157 被引量:55
标识
DOI:10.1016/j.resconrec.2022.106157
摘要

• An intelligent, efficient, environmentally friendly and non-destructive identification and sorting technology for waste textiles is provided. • An online NIR qualitative identification model of 13 kinds of waste textiles is established by the convolutional neural network . • The accuracy of online identification and sorting for 13 kinds of waste textiles is above 95%. • The online recognition and sorting time of each sample is less than 2 s. In order to better recycle waste textiles and save resources, intelligent identification and sorting equipment and technology are urgently needed. In this work, an online near infrared (NIR) spectral library was established by utilizing self-developed online NIR device, including polyester, cotton, wool, silk, viscose, nylon, acrylic, polyester/cotton, polyester/wool, polyester/nylon, polyester/viscose, nylon/spandex and silk/cotton. Importantly, artificial intelligence technology was introduced into the identification and sorting of waste textiles, and two online NIR qualitative identification models covering above 13 kinds of waste textiles were constructed by the convolutional neural network (CNN) and Baidu deep learning platform PaddlePaddle. First, the input one-dimensional spectral data (901-2500 nm) was normalized and converted into a two-dimensional grayscale image of 40*40 pixels. Then feature extraction, compression and dimension reduction of multiple spectra were carried out through convolution and pooling. Finally, the category probability value of each kind of waste textiles was calculated by the CNN model and the maximum value was taken as the final classification of the fabric. Online identification tests were performed using 526 samples as an external validation set, presenting an accuracy of two CNN qualitative identification models were both more than 95.4%. In addition, the accuracy of online identification and sorting was above 95%, and the recognition and sorting time of each sample is less than 2 s, which can perform the efficient identification and automatic sorting of waste textiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如泣草芥完成签到,获得积分0
1秒前
c123完成签到 ,获得积分10
2秒前
qqq完成签到 ,获得积分10
3秒前
开拖拉机的医学僧完成签到 ,获得积分10
5秒前
bc应助大欽欽采纳,获得20
6秒前
7秒前
成事在人307完成签到,获得积分10
10秒前
13秒前
南浔完成签到 ,获得积分10
15秒前
湖里发布了新的文献求助10
18秒前
骄傲慕尼黑完成签到,获得积分10
26秒前
cq_2完成签到,获得积分0
28秒前
陈_Ccc完成签到 ,获得积分10
30秒前
Shao_Jq完成签到 ,获得积分10
35秒前
cdercder应助科研通管家采纳,获得10
36秒前
33应助科研通管家采纳,获得10
36秒前
居里姐姐完成签到 ,获得积分10
36秒前
jia完成签到 ,获得积分10
41秒前
博林大师完成签到,获得积分0
53秒前
难过唯雪完成签到 ,获得积分10
54秒前
小蘑菇应助lxlcx采纳,获得10
59秒前
benyu完成签到,获得积分10
1分钟前
1分钟前
sanch完成签到 ,获得积分10
1分钟前
乌苏完成签到 ,获得积分10
1分钟前
柏事完成签到 ,获得积分10
1分钟前
追寻奇迹完成签到 ,获得积分10
1分钟前
旅程完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Ding-Ding完成签到,获得积分10
1分钟前
子苓完成签到 ,获得积分10
1分钟前
naiyouqiu1989完成签到,获得积分10
1分钟前
研友_GZ3zRn完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
lxlcx发布了新的文献求助10
1分钟前
llhh2024完成签到,获得积分10
1分钟前
zenabia完成签到 ,获得积分10
1分钟前
mechefy完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402450
捐赠科研通 3077226
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743