已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Combining Machine Learning with a Rule-Based Algorithm to Detect and Identify Related Entities of Documented Adverse Drug Reactions on Hospital Discharge Summaries

药物警戒 召回 事件(粒子物理) 精确性和召回率 人工智能 不利影响 机器学习 医学 计算机科学 数据挖掘 药理学 语言学 量子力学 物理 哲学
作者
Hui Xing Tan,Chun Hwee Desmond Teo,Pei San Ang,Wei Ping Celine Loke,Mun Yee Tham,Siew Har Tan,Bee Leng Sally Soh,Pei Qin Belinda Foo,Zheng Ling,Wei Luen James Yip,Yixuan Tang,Jisong Yang,Kum Hoe Anthony Tung,Sreemanee Raaj Dorajoo
出处
期刊:Drug Safety [Adis, Springer Healthcare]
卷期号:45 (8): 853-862 被引量:10
标识
DOI:10.1007/s40264-022-01196-x
摘要

Discharge summaries contain valuable information about adverse drug reactions, but their unstructured nature makes them challenging to analyse and use as a signal source for pharmacovigilance. Machine learning has shown promise in identifying discharge summaries that contain related drug-adverse event pairs but has fared relatively poorer in entity extraction.A hybrid model is developed combining rule-based and machine learning algorithms using discharge summaries with the aim of maximising capture of related drug-adverse event pairs. The rule first identifies segments containing adverse event entities within a 100-character distance from a drug term; machine learning subsequently estimates the relatedness of the drug and adverse event entities contained. The approach is validated on four independent datasets that are temporally and geographically separated from model development data. The impact of restricted drug-adverse event pair detection on recall is evaluated by using two of the four validation datasets that do not impose rule-based restrictions to annotations.The hybrid model achieves a recall of 0.80 (fivefold cross validation), 0.80 (temporal) and 0.76 (geographical) on validation using datasets containing only pre-identified target text segments that fulfil the rule-based algorithm criteria. When tested on datasets that additionally contained drug-adverse event pairs not restricted by the rule-based criteria, recall of the model declines to 0.68 and 0.62 on temporally and geographically separated datasets, respectively.The proposed hybrid model demonstrates reasonable generalisability on external validation. Rule-based restriction of the detection space results in an approximately 12-14% reduction in recall but improves identification of the related drug and adverse event terms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LAGLU完成签到,获得积分10
2秒前
Lyl完成签到 ,获得积分10
3秒前
脑洞疼应助小丫采纳,获得30
4秒前
5秒前
dream完成签到 ,获得积分10
5秒前
6秒前
CWY发布了新的文献求助10
10秒前
SSSSCCCCIIII完成签到,获得积分10
11秒前
bohn123完成签到,获得积分10
11秒前
s20001021s发布了新的文献求助10
12秒前
飞快的语蕊完成签到,获得积分10
12秒前
苇一完成签到,获得积分10
13秒前
15秒前
小丫完成签到,获得积分20
15秒前
15秒前
16秒前
好好好完成签到 ,获得积分10
18秒前
LNN发布了新的文献求助10
20秒前
小丫发布了新的文献求助30
21秒前
夜话风陵杜完成签到 ,获得积分10
21秒前
22秒前
CCC发布了新的文献求助10
23秒前
Brain完成签到 ,获得积分10
24秒前
战神林北完成签到,获得积分10
26秒前
orixero应助lll采纳,获得10
26秒前
CWY完成签到,获得积分20
27秒前
29秒前
surge完成签到,获得积分10
29秒前
无心的哑铃完成签到 ,获得积分10
30秒前
34秒前
Rjy完成签到 ,获得积分10
34秒前
renxuda发布了新的文献求助10
35秒前
CCC完成签到,获得积分10
36秒前
强小强努力努力完成签到 ,获得积分10
36秒前
积极一德完成签到 ,获得积分10
39秒前
lll发布了新的文献求助10
39秒前
李健应助tianle采纳,获得10
41秒前
JIAO完成签到 ,获得积分10
42秒前
hq完成签到 ,获得积分10
42秒前
Lucas应助欢呼的冰蝶采纳,获得10
43秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824866
求助须知:如何正确求助?哪些是违规求助? 3367265
关于积分的说明 10444831
捐赠科研通 3086477
什么是DOI,文献DOI怎么找? 1698062
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769848