Application of machine learning missing data imputation techniques in clinical decision making: taking the discharge assessment of patients with spontaneous supratentorial intracerebral hemorrhage as an example

缺少数据 插补(统计学) 计算机科学 人工智能 机器学习 集成学习 数据挖掘
作者
Huimin Wang,Jianxiang Tang,Mengyao Wu,Xiaoyu Wang,Tao Zhang
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:22 (1) 被引量:36
标识
DOI:10.1186/s12911-022-01752-6
摘要

Abstract Background There are often many missing values in medical data, which directly affect the accuracy of clinical decision making. Discharge assessment is an important part of clinical decision making. Taking the discharge assessment of patients with spontaneous supratentorial intracerebral hemorrhage as an example, this study adopted the missing data processing evaluation criteria more suitable for clinical decision making, aiming at systematically exploring the performance and applicability of single machine learning algorithms and ensemble learning (EL) under different data missing scenarios, as well as whether they had more advantages than traditional methods, so as to provide basis and reference for the selection of suitable missing data processing method in practical clinical decision making. Methods The whole process consisted of four main steps: (1) Based on the original complete data set, missing data was generated by simulation under different missing scenarios (missing mechanisms, missing proportions and ratios of missing proportions of each group). (2) Machine learning and traditional methods (eight methods in total) were applied to impute missing values. (3) The performances of imputation techniques were evaluated and compared by estimating the sensitivity, AUC and Kappa values of prediction models. (4) Statistical tests were used to evaluate whether the observed performance differences were statistically significant. Results The performances of missing data processing methods were different to a certain extent in different missing scenarios. On the whole, machine learning had better imputation performance than traditional methods, especially in scenarios with high missing proportions. Compared with single machine learning algorithms, the performance of EL was more prominent, followed by neural networks. Meanwhile, EL was most suitable for missing imputation under MAR (the ratio of missing proportion 2:1) mechanism, and its average sensitivity, AUC and Kappa values reached 0.908, 0.924 and 0.596 respectively. Conclusions In clinical decision making, the characteristics of missing data should be actively explored before formulating missing data processing strategies. The outstanding imputation performance of machine learning methods, especially EL, shed light on the development of missing data processing technology, and provided methodological support for clinical decision making in presence of incomplete data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灯火发布了新的文献求助30
1秒前
李健的小迷弟应助FKKKKSY采纳,获得10
2秒前
Tangyartie完成签到 ,获得积分10
4秒前
5秒前
顽固分子完成签到 ,获得积分10
6秒前
牡丹花下完成签到 ,获得积分10
6秒前
7秒前
8秒前
无聊的玉米完成签到,获得积分10
9秒前
许志荣发布了新的文献求助10
10秒前
11秒前
11秒前
赘婿应助日月同辉采纳,获得10
11秒前
Ava应助sendou采纳,获得10
11秒前
12秒前
今北完成签到,获得积分10
12秒前
花无双完成签到,获得积分0
12秒前
FKKKKSY完成签到,获得积分10
12秒前
Xiaoxiao发布了新的文献求助10
13秒前
陈同学完成签到,获得积分10
13秒前
小巧钢笔发布了新的文献求助10
13秒前
Hina完成签到,获得积分10
13秒前
自然的霸发布了新的文献求助10
14秒前
sonicker完成签到 ,获得积分10
16秒前
真龙狂婿完成签到,获得积分10
16秒前
FKKKKSY发布了新的文献求助10
17秒前
咖啡先生发布了新的文献求助10
18秒前
舒适的书雪应助自然的霸采纳,获得10
19秒前
流香发布了新的文献求助10
19秒前
墨染清风凉完成签到,获得积分10
20秒前
22秒前
许志荣完成签到,获得积分20
25秒前
刘佳发布了新的文献求助10
25秒前
26秒前
27秒前
咖啡先生完成签到,获得积分20
31秒前
32秒前
yuzhecheng发布了新的文献求助10
33秒前
搜集达人应助Merge采纳,获得10
34秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4784551
求助须知:如何正确求助?哪些是违规求助? 4111791
关于积分的说明 12720731
捐赠科研通 3836495
什么是DOI,文献DOI怎么找? 2115374
邀请新用户注册赠送积分活动 1138370
关于科研通互助平台的介绍 1024339