Application of Hexagonal Boron Nitride to a Heat-Transfer Medium of an InGaN/GaN Quantum-Well Green LED

材料科学 发光二极管 光电子学 蓝宝石 传热 氮化物 二极管 包层(金属加工) 六方氮化硼 图层(电子) 复合材料 光学 纳米技术 激光器 热力学 石墨烯 物理
作者
Ilgyu Choi,Kwanjae Lee,Cheul‐Ro Lee,Joo Song Lee,Soo Min Kim,Kwang‐Un Jeong,Jin Soo Kim
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (20): 18876-18884 被引量:30
标识
DOI:10.1021/acsami.9b05320
摘要

Group III-nitride light-emitting diodes (LEDs) fabricated on sapphire substrates typically suffer from insufficient heat dissipation, largely due to the low thermal conductivities (TCs) of their epitaxial layers and substrates. In the current work, we significantly improved the heat-dissipation characteristics of an InGaN/GaN quantum-well (QW) green LED by using hexagonal boron nitride (hBN) as a heat-transfer medium. Multiple-layer hBN with an average thickness of 11 nm was attached to the back of an InGaN/GaN-QW LED (hBN-LED). As a reference, an LED without the hBN (Ref-LED) was also prepared. After injecting current, heat-transfer characteristics inside each LED were analyzed by measuring temperature distribution throughout the LED as a function of time. For both LED chips, the maximum temperature was measured on the edge n-type electrode brightly shining fabricated on an n-type GaN cladding layer and the minimum temperature was measured at the relatively dark-contrast top surface between the p-type electrodes. The hBN-LED took 6 s to reach its maximum temperature (136.1 °C), whereas the Ref-LED took considerably longer, specifically 11 s. After being switched off, the hBN-LED took 35 s to cool down to 37.5 °C and the Ref-LED took much longer, specifically 265 s. These results confirmed the considerable contribution of the attached hBN to the transfer and dissipation of heat in the LED. The spatial heat-transfer and distribution characteristics along the vertical direction of each LED were theoretically analyzed by carrying out simulations based on the TCs, thicknesses, and thermal resistances of the materials used in the chips. The results of these simulations agreed well with the experimental results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得30
1秒前
Akim应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
2秒前
4秒前
域123181852yyy完成签到,获得积分10
5秒前
5秒前
8秒前
lxz3131发布了新的文献求助10
8秒前
一只商路神完成签到 ,获得积分10
10秒前
小鱼发布了新的文献求助20
10秒前
10秒前
13秒前
诱导效应发布了新的文献求助10
13秒前
zyw完成签到 ,获得积分10
13秒前
科研通AI5应助域123181852yyy采纳,获得10
16秒前
Andy发布了新的文献求助10
16秒前
18秒前
勤奋幻柏完成签到,获得积分10
18秒前
宋文博发布了新的文献求助10
19秒前
20秒前
22秒前
执着绿草完成签到 ,获得积分20
25秒前
25秒前
巧克力完成签到 ,获得积分10
27秒前
小右完成签到 ,获得积分20
29秒前
30秒前
科研通AI6应助极度疯狂采纳,获得10
31秒前
小右发布了新的文献求助10
34秒前
35秒前
李健的小迷弟应助synthetic采纳,获得10
35秒前
求知的周完成签到,获得积分10
37秒前
lpjianai168完成签到,获得积分10
41秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
Decoding Teacher Well-being in Rural China 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4808353
求助须知:如何正确求助?哪些是违规求助? 4122751
关于积分的说明 12755625
捐赠科研通 3858108
什么是DOI,文献DOI怎么找? 2123853
邀请新用户注册赠送积分活动 1145862
关于科研通互助平台的介绍 1038641