数学
序列(生物学)
公制(单位)
班级(哲学)
欧几里德距离
信号(编程语言)
欧几里德几何
算法
组合数学
离散数学
计算机科学
人工智能
几何学
生物
遗传学
经济
程序设计语言
运营管理
作者
Emmanuel J. Candès,Terence Tao
出处
期刊:Cornell University - arXiv
日期:2004-01-01
被引量:61
标识
DOI:10.48550/arxiv.math/0410542
摘要
Suppose we are given a vector $f$ in $\R^N$. How many linear measurements do we need to make about $f$ to be able to recover $f$ to within precision $ε$ in the Euclidean ($\ell_2$) metric? Or more exactly, suppose we are interested in a class ${\cal F}$ of such objects--discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy $ε$? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal $f \in {\cal F}$ decay like a power-law (or if the coefficient sequence of $f$ in a fixed basis decays like a power-law), then it is possible to reconstruct $f$ to within very high accuracy from a small number of random measurements.
科研通智能强力驱动
Strongly Powered by AbleSci AI