Predictive model assessment in PLS-SEM: guidelines for using PLSpredict

预测能力 结构方程建模 偏最小二乘回归 计算机科学 构造(python库) 样品(材料) 预测建模 路径分析(统计学) 解释力 机器学习 管理科学 人工智能 数据挖掘 工程类 哲学 化学 认识论 色谱法 程序设计语言
作者
Galit Shmueli,Marko Sarstedt,Joseph F. Hair,Jun‐Hwa Cheah,Hiram Ting,Santha Vaithilingam,Christian M. Ringle
出处
期刊:European Journal of Marketing [Emerald Publishing Limited]
卷期号:53 (11): 2322-2347 被引量:2560
标识
DOI:10.1108/ejm-02-2019-0189
摘要

Purpose Partial least squares (PLS) has been introduced as a “causal-predictive” approach to structural equation modeling (SEM), designed to overcome the apparent dichotomy between explanation and prediction. However, while researchers using PLS-SEM routinely stress the predictive nature of their analyses, model evaluation assessment relies exclusively on metrics designed to assess the path model’s explanatory power. Recent research has proposed PLSpredict, a holdout sample-based procedure that generates case-level predictions on an item or a construct level. This paper offers guidelines for applying PLSpredict and explains the key choices researchers need to make using the procedure. Design/methodology/approach The authors discuss the need for prediction-oriented model evaluations in PLS-SEM and conceptually explain and further advance the PLSpredict method. In addition, they illustrate the PLSpredict procedure’s use with a tourism marketing model and provide recommendations on how the results should be interpreted. While the focus of the paper is on the PLSpredict procedure, the overarching aim is to encourage the routine prediction-oriented assessment in PLS-SEM analyses. Findings The paper advances PLSpredict and offers guidance on how to use this prediction-oriented model evaluation approach. Researchers should routinely consider the assessment of the predictive power of their PLS path models. PLSpredict is a useful and straightforward approach to evaluate the out-of-sample predictive capabilities of PLS path models that researchers can apply in their studies. Research limitations/implications Future research should seek to extend PLSpredict’s capabilities, for example, by developing more benchmarks for comparing PLS-SEM results and empirically contrasting the earliest antecedent and the direct antecedent approaches to predictive power assessment. Practical implications This paper offers clear guidelines for using PLSpredict, which researchers and practitioners should routinely apply as part of their PLS-SEM analyses. Originality/value This research substantiates the use of PLSpredict. It provides marketing researchers and practitioners with the knowledge they need to properly assess, report and interpret PLS-SEM results. Thereby, this research contributes to safeguarding the rigor of marketing studies using PLS-SEM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangfeidong发布了新的文献求助10
1秒前
魏小梅发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
浮游应助干净秋寒采纳,获得10
3秒前
研友_VZG7GZ应助君莫笑采纳,获得10
4秒前
yangfeidong完成签到,获得积分10
5秒前
熊囧囧发布了新的文献求助10
6秒前
元宝发布了新的文献求助10
6秒前
欢喜代桃发布了新的文献求助10
6秒前
含糊的雨梅完成签到,获得积分10
7秒前
7秒前
zzz完成签到,获得积分20
7秒前
8秒前
xzx发布了新的文献求助10
8秒前
8秒前
Need_Knowledge完成签到,获得积分10
9秒前
LIB完成签到,获得积分10
9秒前
科研通AI5应助阿琬采纳,获得10
9秒前
9秒前
9秒前
852应助key采纳,获得10
10秒前
10秒前
leo发布了新的文献求助10
11秒前
11秒前
Panchael完成签到,获得积分10
12秒前
坦率完成签到,获得积分10
12秒前
是苗苗丫完成签到,获得积分10
12秒前
13秒前
HongY完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
林强完成签到,获得积分10
14秒前
无私语儿发布了新的文献求助10
15秒前
nannannan完成签到,获得积分10
15秒前
Jasper应助Xide采纳,获得10
16秒前
李健应助闪闪飞机采纳,获得10
16秒前
小蘑菇应助熊囧囧采纳,获得10
16秒前
顾矜应助熊囧囧采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Nuclear Fuel Behaviour under RIA Conditions 500
Life: The Science of Biology Digital Update 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4685822
求助须知:如何正确求助?哪些是违规求助? 4059960
关于积分的说明 12552324
捐赠科研通 3756518
什么是DOI,文献DOI怎么找? 2074678
邀请新用户注册赠送积分活动 1103592
科研通“疑难数据库(出版商)”最低求助积分说明 982719