Gradient-Based Source Mask Optimization for Extreme Ultraviolet Lithography

极紫外光刻 平版印刷术 计算机科学 光刻 极端紫外线 参数统计 光学 抵抗 光学接近校正 算法 材料科学 物理 纳米技术 数学 激光器 统计 图层(电子)
作者
Xu Ma,Zhiqiang Wang,Xuanbo Chen,Yanqiu Li,Gonzalo R. Arce
出处
期刊:IEEE transactions on computational imaging 卷期号:5 (1): 120-135 被引量:21
标识
DOI:10.1109/tci.2018.2880342
摘要

Extreme ultraviolet (EUV) lithography is the most promising technology for the next generation very-large scale integrated circuit fabrication. EUV lithography invariably introduces distortions in the projected lithographic mask patterns and thus inverse lithography tools are needed to compensate for these. This paper develops two kinds of model-based source and mask optimization (SMO) frameworks, referred to as the parametric SMO and the pixelated SMO, both to provide primary strategies for improving the image fidelity of EUV lithography. In the parametric SMO, the source pattern is defined by a few geometrical parameters. Meanwhile, in the pixelated SMO, the light source is represented by a grid pattern. These two SMO frameworks are established using a nonlinear imaging model that coarsely approximates the optical proximity effect, flare and photoresist effects in an analytic closed-form. In addition, a retargeting method is used to approximately compensate for the mask shadowing effects based on a calibrated shadowing model. Another contribution of this paper is to develop a hybrid cooperative optimization algorithm based on conjugate gradient and compare it to the simultaneous SMO algorithm. It is shown that the hybrid SMO algorithm can achieve superior convergence characteristics and computational efficiency over the simultaneous SMO algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尔尔完成签到,获得积分10
1秒前
spring完成签到,获得积分10
2秒前
2秒前
KCMd完成签到,获得积分10
3秒前
leng应助yoyo呦呦采纳,获得10
3秒前
科目三应助zttt采纳,获得10
3秒前
酷波er应助水菜泽子采纳,获得10
5秒前
5秒前
5秒前
6秒前
孟长歌发布了新的文献求助10
7秒前
隐形曼青应助l刘慧芳采纳,获得10
7秒前
fighting发布了新的文献求助10
7秒前
8秒前
懒大王发布了新的文献求助10
8秒前
GGGrigor完成签到,获得积分10
8秒前
一盒火柴完成签到,获得积分10
9秒前
人人发布了新的文献求助10
9秒前
dustttt完成签到,获得积分10
9秒前
李健应助lsh2采纳,获得10
10秒前
超哥发布了新的文献求助10
11秒前
11秒前
慢慢发布了新的文献求助10
11秒前
纤维素关注了科研通微信公众号
12秒前
565659发布了新的文献求助30
13秒前
13秒前
huhu完成签到,获得积分20
13秒前
fighting完成签到,获得积分10
15秒前
15秒前
所所应助孟长歌采纳,获得10
15秒前
唐英发布了新的文献求助10
15秒前
顺利谷丝完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
地泽万物发布了新的文献求助10
17秒前
17秒前
18秒前
tsjxs发布了新的文献求助10
18秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
メバロノラクトンの量産技術と皮膚老化防止効果 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3939078
求助须知:如何正确求助?哪些是违规求助? 3485203
关于积分的说明 11031412
捐赠科研通 3214977
什么是DOI,文献DOI怎么找? 1776947
邀请新用户注册赠送积分活动 863246
科研通“疑难数据库(出版商)”最低求助积分说明 798787