Unsupervised Semantic-Preserving Adversarial Hashing for Image Search

散列函数 计算机科学 人工智能 二进制代码 特征哈希 模式识别(心理学) 判别式 汉明空间 图像检索 机器学习 哈希表 理论计算机科学 汉明码 双重哈希 二进制数 图像(数学) 算法 数学 区块代码 解码方法 算术 计算机安全
作者
Cheng Deng,Erkun Yang,Tongliang Liu,Jie Li,Wei Liu,Dacheng Tao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:28 (8): 4032-4044 被引量:159
标识
DOI:10.1109/tip.2019.2903661
摘要

Hashing plays a pivotal role in nearest-neighbor searching for large-scale image retrieval. Recently, deep learning-based hashing methods have achieved promising performance. However, most of these deep methods involve discriminative models, which require large-scale, labeled training datasets, thus hindering their real-world applications. In this paper, we propose a novel strategy to exploit the semantic similarity of the training data and design an efficient generative adversarial framework to learn binary hash codes in an unsupervised manner. Specifically, our model consists of three different neural networks: an encoder network to learn hash codes from images, a generative network to generate images from hash codes, and a discriminative network to distinguish between pairs of hash codes and images. By adversarially training these networks, we successfully learn mutually coherent encoder and generative networks, and can output efficient hash codes from the encoder network. We also propose a novel strategy, which utilizes both feature and neighbor similarities, to construct a semantic similarity matrix, then use this matrix to guide the hash code learning process. Integrating the supervision of this semantic similarity matrix into the adversarial learning framework can efficiently preserve the semantic information of training data in Hamming space. The experimental results on three widely used benchmarks show that our method not only significantly outperforms several state-of-the-art unsupervised hashing methods, but also achieves comparable performance with popular supervised hashing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助wen采纳,获得10
刚刚
1秒前
2秒前
吃嘛嘛香发布了新的文献求助10
3秒前
大模型应助平常雨泽采纳,获得10
4秒前
4秒前
SciGPT应助thuuu采纳,获得10
5秒前
CodeCraft应助zzzzzzy采纳,获得10
5秒前
好好毕业完成签到,获得积分20
6秒前
6秒前
pianoboy发布了新的文献求助10
6秒前
庆123完成签到,获得积分20
6秒前
ArielXu完成签到,获得积分10
7秒前
7秒前
8秒前
123HJJJKJJKJK完成签到,获得积分10
8秒前
柔弱的衬衫完成签到,获得积分10
9秒前
9秒前
FashionBoy应助Akmal采纳,获得10
10秒前
hyx发布了新的文献求助10
11秒前
木木完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
14秒前
14秒前
我是王浩腾我是健身王完成签到,获得积分20
14秒前
送外卖了完成签到,获得积分10
15秒前
orixero应助吃大鱼的虾米采纳,获得10
16秒前
16秒前
16秒前
大天使完成签到 ,获得积分10
17秒前
17秒前
ddddyooo完成签到 ,获得积分10
17秒前
柏康娜发布了新的文献求助30
17秒前
17秒前
17秒前
冰可乐完成签到,获得积分10
17秒前
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814775
求助须知:如何正确求助?哪些是违规求助? 3358921
关于积分的说明 10398088
捐赠科研通 3076295
什么是DOI,文献DOI怎么找? 1689750
邀请新用户注册赠送积分活动 813229
科研通“疑难数据库(出版商)”最低求助积分说明 767599