数学
趋同(经济学)
理论(学习稳定性)
财产(哲学)
勒贝格积分
代表(政治)
纯数学
领域(数学分析)
对偶(语法数字)
功能(生物学)
班级(哲学)
弱收敛
应用数学
数学分析
计算机科学
经济
法学
政治学
进化生物学
计算机安全
认识论
生物
艺术
经济增长
政治
人工智能
资产(计算机安全)
文学类
机器学习
哲学
作者
Niushan Gao,Cosimo Munari,Foivos Xanthos
出处
期刊:Cornell University - arXiv
日期:2019-09-24
标识
DOI:10.48550/arxiv.1909.10735
摘要
We investigate a variety of stability properties of Haezendonck-Goovaerts premium principles on their natural domain, namely Orlicz spaces. We show that such principles always satisfy the Fatou property. This allows to establish a tractable dual representation without imposing any condition on the reference Orlicz function. In addition, we show that Haezendonck-Goovaerts principles satisfy the stronger Lebesgue property if and only if the reference Orlicz function fulfills the so-called $Δ_2$ condition. We also discuss (semi)continuity properties with respect to $Φ$-weak convergence of probability measures. In particular, we show that Haezendonck-Goovaerts principles, restricted to the corresponding Young class, are always lower semicontinuous with respect to the $Φ$-weak convergence.
科研通智能强力驱动
Strongly Powered by AbleSci AI