In situ TEM observation of the heat–induced degradation of single– and triple–cation planar perovskite solar cells

材料科学 降级(电信) 能量转换效率 钙钛矿(结构) 原位 热稳定性 化学工程 透射电子显微镜 平面的 光伏系统 单晶 热的 纳米技术 光电子学 结晶学 化学 气象学 有机化学 工程类 计算机图形学(图像) 物理 生物 电信 计算机科学 生态学
作者
You‐Hyun Seo,Jun Hee Kim,Do‐Hyung Kim,Hee‐Suk Chung,Seok‐In Na
出处
期刊:Nano Energy [Elsevier]
卷期号:77: 105164-105164 被引量:40
标识
DOI:10.1016/j.nanoen.2020.105164
摘要

Benefiting from the structural stability of the formamidium and Cs cation by tuning the methylammonium while partially replacing iodine with Br, the triple–cation perovskite solar cells (PSCs) have shown improved power conversion efficiency (PCE) and thermal stability, compared to single–cation PSCs. However, the thermal stability of the triple–cation perovskite is not fully understood, which limits the further development of device performance and stability of the PSCs. This paper reports the thermal–induced effects on the photovoltaic performances for Cs x (FA y MA (1–y) ) (1–x) Pb(I z Br (1–z) ) 3 (Cs/FA/MA)–PSCs as compared to MAPbI 3 (MA)–PSCs, and further investigate the degradation phenomena directly by using real–time in situ transmission electron microscopy (TEM). This in situ TEM observation shows the different degradation phenomena in the MA– and Cs/FA/MA–PSCs, and confirms the correlation of its effects on the device performance. Furthermore, analyses of the elements and crystal structures reveal distinct differences in the decomposed products between MA– and Cs/FA/MA–PSC, and these relevant thermal–induced degradation mechanisms are also discussed in detail. This study will potentially help understanding of the thermal degradation of PSCs, and can be used for the future development of high–performance and stable PSCs. • Heat-induced degradation of single– and triple–PSCs were observed via in situ TEM. • The dark voids and Pb particles were found to be critical under thermal stress. • In-situ TEM results identified the different degradation mechanism between both PSCs. • This work provides clues as to how to protect against the thermal degradation of PSCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liukang172完成签到,获得积分10
刚刚
nimo发布了新的文献求助10
3秒前
李小猫发布了新的文献求助10
3秒前
帆帆发布了新的文献求助10
4秒前
5秒前
甜美的尔岚完成签到 ,获得积分10
8秒前
8秒前
lll完成签到 ,获得积分10
8秒前
9秒前
freya完成签到,获得积分10
10秒前
紫霞发布了新的文献求助30
10秒前
12秒前
shinyar完成签到 ,获得积分10
13秒前
14秒前
小吴完成签到,获得积分10
15秒前
hsa_ID发布了新的文献求助10
17秒前
搜集达人应助健康的傲白采纳,获得10
22秒前
隐形曼青应助浮希颜采纳,获得10
23秒前
研友_ZzrNpZ发布了新的文献求助10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
烟花应助科研通管家采纳,获得30
24秒前
所所应助科研通管家采纳,获得10
24秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
Akim应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
在水一方应助科研通管家采纳,获得10
25秒前
流沙完成签到 ,获得积分10
25秒前
英姑应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
tuanheqi应助科研通管家采纳,获得150
25秒前
25秒前
CodeCraft应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160