Vision-based Robotic Grasping From Object Localization, Object Pose Estimation to Grasp Estimation for Parallel Grippers: A Review

对象(语法) 机器人 基于对象
作者
Guoguang Du,Kai Wang,Shiguo Lian,Kaiyong Zhao
出处
期刊:arXiv: Robotics 被引量:10
标识
DOI:10.1007/s10462-020-09888-5
摘要

This paper presents a comprehensive survey on vision-based robotic grasping. We conclude three key tasks during vision-based robotic grasping, which are object localization, object pose estimation and grasp estimation. In detail, the object localization task contains object localization without classification, object detection and object instance segmentation. This task provides the regions of the target object in the input data. The object pose estimation task mainly refers to estimating the 6D object pose and includes correspondence-based methods, template-based methods and voting-based methods, which affords the generation of grasp poses for known objects. The grasp estimation task includes 2D planar grasp methods and 6DoF grasp methods, where the former is constrained to grasp from one direction. These three tasks could accomplish the robotic grasping with different combinations. Lots of object pose estimation methods need not object localization, and they conduct object localization and object pose estimation jointly. Lots of grasp estimation methods need not object localization and object pose estimation, and they conduct grasp estimation in an end-to-end manner. Both traditional methods and latest deep learning-based methods based on the RGB-D image inputs are reviewed elaborately in this survey. Related datasets and comparisons between state-of-the-art methods are summarized as well. In addition, challenges about vision-based robotic grasping and future directions in addressing these challenges are also pointed out.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CAOHOU应助坚强的夏瑶采纳,获得10
1秒前
CipherSage应助Leee采纳,获得10
2秒前
2秒前
felix发布了新的文献求助10
3秒前
xzf1996完成签到,获得积分10
4秒前
syxz0628发布了新的文献求助10
4秒前
4秒前
感动书竹发布了新的文献求助10
6秒前
圆圆发布了新的文献求助10
6秒前
1111完成签到,获得积分10
7秒前
aldehyde应助友好寒珊采纳,获得10
7秒前
8秒前
无私的凝安完成签到,获得积分10
8秒前
夜雨完成签到 ,获得积分10
9秒前
熊四是誰完成签到,获得积分10
11秒前
11秒前
大模型应助felix采纳,获得30
11秒前
11秒前
FashionBoy应助奥特斌采纳,获得10
12秒前
科研牛马完成签到,获得积分10
14秒前
妮妮发布了新的文献求助10
14秒前
14秒前
tamo发布了新的文献求助10
15秒前
melody发布了新的文献求助30
16秒前
BCEMTZ完成签到,获得积分10
17秒前
J_L应助知性的觅露采纳,获得10
17秒前
感动书竹完成签到,获得积分10
17秒前
小红要发文章哦完成签到,获得积分10
19秒前
Lucas应助JN采纳,获得10
19秒前
李先生完成签到,获得积分10
19秒前
21秒前
beard发布了新的文献求助10
22秒前
柚子完成签到,获得积分20
22秒前
火星上誉完成签到 ,获得积分10
23秒前
草莓发布了新的文献求助10
23秒前
杜小鱼完成签到,获得积分10
23秒前
25秒前
科研通AI2S应助morii采纳,获得10
26秒前
辛勤幼南完成签到,获得积分10
27秒前
活泼的诗桃完成签到,获得积分10
28秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3907805
求助须知:如何正确求助?哪些是违规求助? 3453653
关于积分的说明 10876359
捐赠科研通 3179586
什么是DOI,文献DOI怎么找? 1756553
邀请新用户注册赠送积分活动 849630
科研通“疑难数据库(出版商)”最低求助积分说明 791667