An efficient tea quality classification algorithm based on near infrared spectroscopy and random Forest

随机森林 计算机科学 质量(理念) 集合(抽象数据类型) 决策树 过程(计算) 算法 人工智能 模式识别(心理学) 数据挖掘 哲学 认识论 程序设计语言 操作系统
作者
Guikun Chen,Xiangchen Zhang,Zebiao Wu,Jinhe Su,Guorong Cai
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:44 (1) 被引量:20
标识
DOI:10.1111/jfpe.13604
摘要

Abstract Traditional tea quality evaluation methods are based on chemical testing, such as gas chromatography‐mass spectrometry (GCMS) and high‐performance liquid chromatography (HPLC). However, the process of extracting chemical components is generally time‐consuming and expensive, which makes it unsuitable for wide range of applications. Therefore, this paper presents a new approach to evaluate tea quality based on Near‐infrared Spectroscopy (NIRS) devices. In our method, factor analysis compression algorithm is first applied to initially compress the input NIRS vectors, which are acquired from tea samples with high dimensional data. Then, random forest algorithm is employed to construct a voting strategy. More precisely speaking, we proposed a low‐cost and convenient tea quality estimation scheme that can be widely used in tea industry. The proposed approach has been verified using tea NIRS datasets which were acquired from Fujian Province. Experiments show that the proposed NIRS‐based approach significantly outperforms the GCMS‐based and HPLC‐based methods. Specially, we achieved a highly competitive performance (AP = 0.989) on the comprehensive data set that contains 869 annotated Chinese tea samples, which means that tea quality can be estimated in a convenient and cheaper way. Practical Applications The proposed tea classification approach based on artificial intelligence which lend new perspectives to tea merchants and consumers insight and decision‐making. The approach can perform preference adjustments in various conditions such as regions, crowd habits, seasons, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮的从灵完成签到,获得积分10
刚刚
JamesPei应助经冰夏采纳,获得10
1秒前
1秒前
apt发布了新的文献求助10
1秒前
1秒前
ggggglllll完成签到,获得积分20
1秒前
吉吉发布了新的文献求助30
3秒前
科研通AI5应助双星采纳,获得10
3秒前
爆米花应助任性的水风采纳,获得10
3秒前
4秒前
5秒前
小小二完成签到,获得积分10
5秒前
领导范儿应助nini采纳,获得10
5秒前
在水一方应助静好采纳,获得10
5秒前
chenqingyu发布了新的文献求助10
6秒前
情怀应助cdercder采纳,获得10
7秒前
7秒前
8秒前
bolunxier完成签到,获得积分10
8秒前
科目三应助hyy采纳,获得10
9秒前
10秒前
10秒前
海绵宝宝发布了新的文献求助20
11秒前
善学以致用应助小李老博采纳,获得10
12秒前
12秒前
光亮笑蓝发布了新的文献求助10
12秒前
Jennifer完成签到,获得积分10
12秒前
科研通AI6应助烂漫的访天采纳,获得10
12秒前
小丫发布了新的文献求助10
13秒前
可爱的函函应助风中的逊采纳,获得10
13秒前
田様应助易安采纳,获得10
14秒前
15秒前
Rylee发布了新的文献求助10
15秒前
16秒前
小熊饼干完成签到,获得积分10
16秒前
香蕉觅云应助zhfliang采纳,获得10
17秒前
17秒前
TMY完成签到,获得积分20
18秒前
斯文依风完成签到,获得积分10
18秒前
nana发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4580110
求助须知:如何正确求助?哪些是违规求助? 3998280
关于积分的说明 12378387
捐赠科研通 3672683
什么是DOI,文献DOI怎么找? 2024040
邀请新用户注册赠送积分活动 1058143
科研通“疑难数据库(出版商)”最低求助积分说明 944885