SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine Reconstruction With Self-Projection Optimization

点云 增采样 计算机科学 人工智能 特征(语言学) 基本事实 模式识别(心理学) 特征提取 投影(关系代数) 计算机视觉 算法 图像(数学) 哲学 语言学
作者
Xinhai Liu,Xinchen Liu,Yu-Shen Liu,Zhizhong Han
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 4213-4226 被引量:37
标识
DOI:10.1109/tip.2022.3182266
摘要

The task of point cloud upsampling aims to acquire dense and uniform point sets from sparse and irregular point sets. Although significant progress has been made with deep learning models, state-of-the-art methods require ground-truth dense point sets as the supervision, which makes them limited to be trained under synthetic paired training data and not suitable to be under real-scanned sparse data. However, it is expensive and tedious to obtain large numbers of paired sparsedense point sets as supervision from real-scanned sparse data. To address this problem, we propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface. Specifically, we propose a coarse-to-fine reconstruction framework, which contains two main components: point feature extraction and point feature expansion, respectively. In the point feature extraction, we integrate the self-attention module with the graph convolution network (GCN) to capture context information inside and among local regions simultaneously. In the point feature expansion, we introduce a hierarchically learnable folding strategy to generate upsampled point sets with learnable 2D grids. Moreover, to further optimize the noisy points in the generated point sets, we propose a novel self-projection optimization associated with uniform and reconstruction terms as a joint loss to facilitate the self-supervised point cloud upsampling. We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performances to state-of-the-art supervised methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
乌萨奇关注了科研通微信公众号
1秒前
3秒前
4秒前
丁宁完成签到 ,获得积分10
5秒前
照度计发布了新的文献求助10
5秒前
香蕉觅云应助御坂延珠采纳,获得10
6秒前
暴富发布了新的文献求助10
6秒前
碧蓝中道发布了新的文献求助10
7秒前
10秒前
故意的松思应助Buney采纳,获得50
12秒前
13秒前
勤奋凡之完成签到 ,获得积分10
13秒前
小肥羊发布了新的文献求助10
15秒前
George发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
18秒前
万能图书馆应助琪凯定理采纳,获得10
18秒前
科研通AI5应助碧蓝中道采纳,获得30
19秒前
zho应助兴奋的阿黄采纳,获得10
19秒前
shangx发布了新的文献求助10
19秒前
Hello应助咕咕咕只会咕咕采纳,获得10
20秒前
kevin1018发布了新的文献求助10
20秒前
20秒前
21秒前
酷波er应助lahaa采纳,获得10
21秒前
发dasd发布了新的文献求助10
22秒前
Levus发布了新的文献求助10
22秒前
22秒前
23秒前
FashionBoy应助小小采纳,获得10
24秒前
丘比特应助暴富采纳,获得10
24秒前
谨慎志泽发布了新的文献求助10
25秒前
25秒前
完美世界应助zoe采纳,获得10
25秒前
科研通AI5应助张龙雨采纳,获得30
25秒前
George完成签到,获得积分10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792128
求助须知:如何正确求助?哪些是违规求助? 3336396
关于积分的说明 10280645
捐赠科研通 3053053
什么是DOI,文献DOI怎么找? 1675455
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761382