Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review

模式 计算机科学 乳腺癌 背景(考古学) 人工智能 深度学习 机器学习 医学影像学 癌症检测 模态(人机交互) 乳房成像 医学物理学 乳腺摄影术 癌症 医学 内科学 社会学 古生物学 生物 社会科学
作者
Essam H. Houssein,Marwa M. Emam,Abdelmgeid A. Ali,Ponnuthurai Nagaratnam Suganthan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:167: 114161-114161 被引量:223
标识
DOI:10.1016/j.eswa.2020.114161
摘要

Breast cancer is the second leading cause of death for women, so accurate early detection can help decrease breast cancer mortality rates. Computer-aided detection allows radiologists to detect abnormalities efficiently. Medical images are sources of information relevant to the detection and diagnosis of various diseases and abnormalities. Several modalities allow radiologists to study the internal structure, and these modalities have been met with great interest in several types of research. In some medical fields, each of these modalities is of considerable significance. This study aims at presenting a review that shows the new applications of machine learning and deep learning technology for detecting and classifying breast cancer and provides an overview of progress in this area. This review reflects on the classification of breast cancer utilizing multi-modalities medical imaging. Details are also given on techniques developed to facilitate the classification of tumors, non-tumors, and dense masses in various medical imaging modalities. It first provides an overview of the different approaches to machine learning, then an overview of the different deep learning techniques and specific architectures for the detection and classification of breast cancer. We also provide a brief overview of the different image modalities to give a complete overview of the area. In the same context, this review was performed using a broad variety of research databases as a source of information for access to various field publications. Finally, this review summarizes the future trends and challenges in the classification and detection of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助小田采纳,获得30
刚刚
科研通AI5应助小田采纳,获得10
刚刚
程风破浪发布了新的文献求助10
1秒前
2秒前
3秒前
柠檬完成签到 ,获得积分10
6秒前
yu完成签到 ,获得积分10
6秒前
7秒前
bkagyin应助小田采纳,获得10
8秒前
8秒前
8秒前
WSZXQ发布了新的文献求助30
9秒前
yangyang完成签到,获得积分10
9秒前
10秒前
13秒前
Krrr发布了新的文献求助10
14秒前
16秒前
liuuuuu发布了新的文献求助30
16秒前
enternow完成签到 ,获得积分10
17秒前
yang_keai完成签到,获得积分10
19秒前
abe发布了新的文献求助10
19秒前
20秒前
22秒前
Krrr完成签到,获得积分10
22秒前
23秒前
liuuuuu完成签到,获得积分10
23秒前
mzc发布了新的文献求助10
25秒前
英俊的铭应助科研通管家采纳,获得10
26秒前
Akim应助科研通管家采纳,获得10
26秒前
李爱国应助科研通管家采纳,获得10
26秒前
26秒前
英俊的铭应助WSZXQ采纳,获得10
27秒前
黄婷婷发布了新的文献求助10
27秒前
共享精神应助山山而川采纳,获得10
28秒前
执着期待完成签到 ,获得积分10
28秒前
zhongjr_hz完成签到,获得积分10
28秒前
程风破浪发布了新的文献求助10
29秒前
32秒前
32秒前
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779780
求助须知:如何正确求助?哪些是违规求助? 3325232
关于积分的说明 10222026
捐赠科研通 3040376
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549