计算机科学
人工智能
分割
图像分割
分类
背景(考古学)
任务(项目管理)
图像(数学)
基于分割的对象分类
深度学习
尺度空间分割
模式识别(心理学)
计算机视觉
地理
管理
考古
经济
作者
Saeid Asgari Taghanaki,Kumar Abhishek,Joseph Cohen,Julien Cohen‐Adad,Ghassan Hamarneh
出处
期刊:École Polytechnique de Montréal - PolyPublie
日期:2020-01-01
被引量:797
标识
DOI:10.1007/s10462-020-09854-1
摘要
The semantic image segmentation task consists of classifying each pixel of an image into an instance, where each instance corresponds to a class. This task is a part of the concept of scene understanding or better explaining the global context of an image. In the medical image analysis domain, image segmentation can be used for image-guided interventions, radiotherapy, or improved radiological diagnostics. In this review, we categorize the leading deep learning-based medical and non-medical image segmentation solutions into six main groups of deep architectural, data synthesis-based, loss function-based, sequenced models, weakly supervised, and multi-task methods and provide a comprehensive review of the contributions in each of these groups. Further, for each group, we analyze each variant of these groups and discuss the limitations of the current approaches and present potential future research directions for semantic image segmentation.
科研通智能强力驱动
Strongly Powered by AbleSci AI