PCA-DEA-tobit regression assessment with carbon emission constraints of China’s logistics industry

托比模型 中国 业务 回归分析 回归 碳纤维 计量经济学 经济 统计 数学 地理 复合数 算法 考古
作者
Fumin Deng,Lin Xu,Yuan Fang,Qunxi Gong,Zhi Li
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:271: 122548-122548 被引量:94
标识
DOI:10.1016/j.jclepro.2020.122548
摘要

China’s logistics industry has developed rapidly recently, but it also faces problems such as high costs, low efficiency and excessive carbon emissions, which has caused a heavy burden on the environment. However, there are few studies on the consideration of carbon emission factors in logistics performance evaluation. To this end, this study developed a comprehensive evaluation index system to assess the performance of China’s logistics. Principal Component Analysis (PCA) was applied to reduce the indicator dimensions and then a Slacks-Based Measure-Data Envelopment Analysis (SBM-DEA) was employed to measure and evaluate the logistics performance with and without carbon emissions constraints of 30 provinces/municipalities in China and analyze the overall level and spatial characteristics of China’s logistics industry efficiency. Regression analyses using the Tobit model were then conducted to identify the driving factors. The results show that: (1) There are large regional differences in China’s logistics efficiency, showing a gradual decline from east to west regions; (2) Low scale efficiency is an important factor restricting the logistics development; (3) In terms of influencing factors, regional economic and logistics development are positively related to the logistics efficiency, and energy structure and government influence are negatively related to the logistics efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
YY驳回了大模型应助
3秒前
脑洞疼应助Aurora采纳,获得10
4秒前
吱吱发布了新的文献求助10
5秒前
6秒前
慕青应助热心玉兰采纳,获得10
7秒前
科研通AI2S应助Tsuzuri采纳,获得10
7秒前
8秒前
9秒前
10秒前
1391451653完成签到,获得积分10
10秒前
12秒前
12秒前
英姑应助小任性采纳,获得10
14秒前
15秒前
彩色的松思关注了科研通微信公众号
15秒前
MRM完成签到 ,获得积分10
15秒前
Doraemon发布了新的文献求助10
17秒前
123123发布了新的文献求助10
18秒前
科目三应助吱吱采纳,获得10
18秒前
gr完成签到,获得积分10
18秒前
20秒前
bleu发布了新的文献求助10
20秒前
丸子完成签到,获得积分10
22秒前
22秒前
科研通AI5应助程风破浪采纳,获得10
22秒前
zdywww完成签到,获得积分20
23秒前
上官若男应助争气采纳,获得10
25秒前
dudu发布了新的文献求助30
27秒前
葵景发布了新的文献求助10
28秒前
jenningseastera应助123123采纳,获得30
29秒前
风趣尔蓝完成签到,获得积分10
29秒前
30秒前
SciGPT应助迅速的八宝粥采纳,获得10
33秒前
研友_VZG7GZ应助aka毕业顺利采纳,获得10
33秒前
zdywww发布了新的文献求助10
33秒前
33秒前
热心玉兰完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780569
求助须知:如何正确求助?哪些是违规求助? 3326080
关于积分的说明 10225440
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669