A Background-Agnostic Framework with Adversarial Training for Abnormal Event Detection in Video

计算机科学 人工智能 异常检测 事件(粒子物理) 背景(考古学) 集合(抽象数据类型) 目标检测 光学(聚焦) 计算机视觉 跳跃式监视 编码器 模式识别(心理学) 对象(语法) 机器学习 古生物学 物理 光学 程序设计语言 操作系统 生物 量子力学
作者
Mariana Iuliana Georgescu,Radu Tudor Ionescu,Fahad Shahbaz Khan,Marius Popescu,Mubarak Shah
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:131
标识
DOI:10.1109/tpami.2021.3074805
摘要

Abnormal event detection in video is a complex computer vision problem that has attracted significant attention in recent years. The complexity of the task arises from the commonly-adopted definition of an abnormal event, that is, a rarely occurring event that typically depends on the surrounding context. Following the standard formulation of abnormal event detection as outlier detection, we propose a background-agnostic framework that learns from training videos containing only normal events. Our framework is composed of an object detector, a set of appearance and motion auto-encoders, and a set of classifiers. Since our framework only looks at object detections, it can be applied to different scenes, provided that normal events are defined identically across scenes and that the single main factor of variation is the background. To overcome the lack of abnormal data during training, we propose an adversarial learning strategy for the auto-encoders. We create a scene-agnostic set of out-of-domain pseudo-abnormal examples, which are correctly reconstructed by the auto-encoders before applying gradient ascent on the pseudo-abnormal examples. We further utilize the pseudo-abnormal examples to serve as abnormal examples when training appearance-based and motion-based binary classifiers to discriminate between normal and abnormal latent features and reconstructions. We compare our framework with the state-of-the-art methods on four benchmark data sets, using various evaluation metrics. Compared to existing methods, the empirical results indicate that our approach achieves favorable performance on all data sets. In addition, we provide region-based and track-based annotations for two large-scale abnormal event detection data sets from the literature, namely ShanghaiTech and Subway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助Hibiscus95采纳,获得10
1秒前
工大搬砖战神完成签到,获得积分10
2秒前
顺其自然完成签到 ,获得积分10
3秒前
4秒前
追光发布了新的文献求助10
5秒前
5秒前
碎冰蓝发布了新的文献求助10
5秒前
zongjinying关注了科研通微信公众号
7秒前
yuhuan应助魔幻冷风采纳,获得10
10秒前
猪猪hero应助baishui采纳,获得10
10秒前
10秒前
桐桐应助俏皮诺言采纳,获得10
11秒前
长风发布了新的文献求助10
11秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
oboy应助科研通管家采纳,获得10
12秒前
13秒前
烟花应助科研通管家采纳,获得10
13秒前
13秒前
孙燕应助科研通管家采纳,获得10
13秒前
hua应助zhhl2006采纳,获得10
15秒前
16秒前
17秒前
LXZ发布了新的文献求助10
17秒前
19秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
22秒前
李爱国应助追光采纳,获得10
22秒前
搞怪哑铃发布了新的文献求助10
22秒前
TRACEY完成签到,获得积分10
22秒前
jerrymomoko应助Winnie采纳,获得10
22秒前
Genger完成签到,获得积分10
24秒前
25秒前
25秒前
敏感的咖啡豆完成签到 ,获得积分10
26秒前
星辰大海应助呆萌的谷波采纳,获得10
28秒前
28秒前
lily发布了新的文献求助30
29秒前
31秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867198
求助须知:如何正确求助?哪些是违规求助? 3409455
关于积分的说明 10663716
捐赠科研通 3133646
什么是DOI,文献DOI怎么找? 1728348
邀请新用户注册赠送积分活动 832966
科研通“疑难数据库(出版商)”最低求助积分说明 780510