亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving Human-Robot Interaction Utilizing Learning and Intelligence: A Human Factors-Based Approach

适应性 人工智能 自动化 机器人学 机器人 计算机科学 人机交互 人机交互 人工神经网络 控制(管理) 机器学习 工程类 机械工程 生态学 生物
作者
Harley Oliff,Ying Liu,Maneesh Kumar,Michael Williams
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:22
标识
DOI:10.1109/tase.2020.2967093
摘要

Several decades of development in the fields of robotics and automation have resulted in human-robot interaction is commonplace, and the subject of intense study. These interactions are particularly prevalent in manufacturing, where human operators (HOs) have been employed in numerous robotics and automation tasks. The presence of HOs continues to be a source of uncertainty in such systems, despite the study of human factors, in an attempt to better understand these variations in performance. Concurrent developments in intelligent manufacturing present opportunities for adaptability within robotic control. This article examines relevant human factors and develops a framework for integrating the necessary elements of intelligent control and data processing to provide appropriate adaptability to robotic elements, consequently improving collaborative interaction with human colleagues. A neural network-based learning approach is used to predict the influence on human task performance and use these predictions to make informed changes to programed behavior, and a methodology developed to explore the application of learning techniques to this area further. This article is supported by an example case study, in which a simulation model is used to explore the application of the developed system, and its performance in a real-world production scenario. The simulation results reveal that adaptability can be realized with some relatively simple techniques and models if applied in the right manner and that such adaptability is helpful to tackle the issue of performance disparity in manufacturing operations. Note to Practitioners-This article presents research into the application of intelligent methodologies to this problem and builds a framework to describe how this information can be captured, generated, and used within manufacturing production processes. This framework helps identify which areas require further research and serves as a basis for the development of a methodology, by which a control system may enable adaptable behavior to reduce the impact of human performance variation and improve human-machine interaction (HMI). This article also presents a simulation-based case study to support the development and evaluate the presented control system on a representative real-world problem. The methodology makes use of a machine-learning approach to identify the complex influence of several identified human factors on human performance. This knowledge can be used to adjust the robotic behavior to match the predicted performance of multiple different operators over different scenarios. This adaptability reduces performance disparity by reducing idle times and enabling leaner production through workpiece-in-progress reduction. Future work will focus on expanding the intelligent capabilities of the proposed system to deal with uncertainty and improve decision-making ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵喵发布了新的文献求助10
2秒前
17秒前
Ji发布了新的文献求助10
23秒前
Ji完成签到,获得积分10
36秒前
47秒前
51秒前
失眠思远发布了新的文献求助10
58秒前
CodeCraft应助儒雅老太采纳,获得10
59秒前
华仔应助甜甜亦丝采纳,获得10
1分钟前
1分钟前
今后应助曼曼采纳,获得10
1分钟前
甜甜亦丝发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
曼曼发布了新的文献求助10
1分钟前
曼曼完成签到,获得积分10
1分钟前
FWCY发布了新的文献求助10
2分钟前
赘婿应助小婷君采纳,获得10
2分钟前
2分钟前
小婷君完成签到,获得积分10
2分钟前
小婷君发布了新的文献求助10
2分钟前
2分钟前
mir为少发布了新的文献求助10
2分钟前
mir为少完成签到,获得积分20
2分钟前
香蕉觅云应助喵喵采纳,获得10
2分钟前
华仔应助mir为少采纳,获得10
3分钟前
3分钟前
3分钟前
儒雅老太发布了新的文献求助10
3分钟前
喵喵发布了新的文献求助10
3分钟前
尊敬的小凡完成签到,获得积分10
3分钟前
熬夜猝死的我完成签到,获得积分10
3分钟前
FashionBoy应助喵喵采纳,获得10
4分钟前
4分钟前
喵喵发布了新的文献求助10
4分钟前
4分钟前
5分钟前
深情安青应助喵喵采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078540
求助须知:如何正确求助?哪些是违规求助? 4297273
关于积分的说明 13388009
捐赠科研通 4120046
什么是DOI,文献DOI怎么找? 2256401
邀请新用户注册赠送积分活动 1260687
关于科研通互助平台的介绍 1194374