AI-IDS: Application of Deep Learning to Real-Time Web Intrusion Detection

计算机科学 可扩展性 深度学习 人工智能 入侵检测系统 卷积神经网络 机器学习 网络安全 数据挖掘 假阳性悖论 服务拒绝攻击 人工神经网络 计算机网络 数据库 互联网 万维网
作者
Aechan Kim,Mohyun Park,Dong Hoon Lee
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 70245-70261 被引量:156
标识
DOI:10.1109/access.2020.2986882
摘要

Deep Learning has been widely applied to problems in detecting various network attacks.However, no cases on network security have shown applications of various deep learning algorithms in real-time services beyond experimental conditions.Moreover, owing to the integration of high-performance computing, it is necessary to apply systems that can handle large-scale traffic.Given the rapid evolution of web-attacks, we implemented and applied our Artificial Intelligence-based Intrusion Detection System (AI-IDS).We propose an optimal convolutional neural network and long short-term memory network (CNN-LSTM) model, normalized UTF-8 character encoding for Spatial Feature Learning (SFL) to adequately extract the characteristics of real-time HTTP traffic without encryption, calculating entropy, and compression.We demonstrated its excellence through repeated experiments on two public datasets (CSIC-2010, CICIDS2017) and fixed real-time data.By training payloads that analyzed true or false positives with a labeling tool, AI-IDS distinguishes sophisticated attacks, such as unknown patterns, encoded or obfuscated attacks from benign traffic.It is a flexible and scalable system that is implemented based on Docker images, separating user-defined functions by independent images.It also helps to write and improve Snort rules for signature-based IDS based on newly identified patterns.As the model calculates the malicious probability by continuous training, it could accurately analyze unknown web-attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiao完成签到,获得积分10
刚刚
斐嘿嘿发布了新的文献求助10
刚刚
戈笙gg完成签到,获得积分10
1秒前
1秒前
Anqi完成签到 ,获得积分10
1秒前
嘻嘻完成签到,获得积分10
1秒前
乐乐应助可靠吐司采纳,获得10
2秒前
Xiaoxiao应助Jimmy采纳,获得10
2秒前
2秒前
cmzj关注了科研通微信公众号
3秒前
3秒前
ding应助DZQ采纳,获得10
3秒前
4秒前
活泼的友绿完成签到,获得积分10
5秒前
社会主义接班人完成签到,获得积分10
6秒前
young发布了新的文献求助10
6秒前
睡到自然醒完成签到 ,获得积分10
7秒前
灵素发布了新的文献求助10
7秒前
moonlight完成签到,获得积分10
7秒前
优秀的荠发布了新的文献求助10
8秒前
猴儿发布了新的文献求助10
9秒前
英俊的铭应助free采纳,获得10
9秒前
快乐友灵完成签到,获得积分10
9秒前
tRNA发布了新的文献求助10
9秒前
我是老大应助迷路的天蓉采纳,获得10
10秒前
10秒前
FashionBoy应助王啵啵采纳,获得10
10秒前
Leo完成签到,获得积分10
11秒前
Andre发布了新的文献求助10
11秒前
Auston_zhong应助qq采纳,获得10
11秒前
宋芝恬完成签到,获得积分10
12秒前
善良的远锋完成签到,获得积分10
13秒前
14秒前
huateng完成签到,获得积分10
14秒前
14秒前
15秒前
科大y发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793818
求助须知:如何正确求助?哪些是违规求助? 3338647
关于积分的说明 10291005
捐赠科研通 3055082
什么是DOI,文献DOI怎么找? 1676342
邀请新用户注册赠送积分活动 804374
科研通“疑难数据库(出版商)”最低求助积分说明 761853