STAT1
RNA干扰
干扰素
贾纳斯激酶
JAK-STAT信号通路
STAT蛋白
转录因子
癌症研究
细胞凋亡
斯达
车站3
化学
信号转导
细胞生物学
生物
核糖核酸
酪氨酸激酶
免疫学
基因
生物化学
作者
Takaya Tsuno,Josef Mejido,Tongmao Zhao,Hana Schmeisser,Angel Morrow,Kathryn C. Zoon
标识
DOI:10.1097/cji.0b013e3181ad4092
摘要
A number of tumors are still resistant to the antiproliferative activity of human interferon (IFN)-α. The Janus kinases/Signal Transducers and Activators of Transcription (JAK-STAT) pathway plays an important role in initial IFN signaling. To enhance the antiproliferative activity of IFN-α, it is important to elucidate which factors in the JAK-STAT pathway play a key role in eliciting this activity. In human ovarian adenocarcinoma OVCAR3 cells sensitive to both IFN-α and IFN-γ, only IFN regulatory factor 9 (IRF9)-RNA interference (RNAi) completely inhibited the antiproliferative activity of IFN-α among the intracellular JAK-STAT pathway factors. Conversely, Stat1-RNAi did not inhibit the antiproliferative activity of IFN-α, whereas it partially inhibited that of IFN-γ. As a cell death pathway, it is reported that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through TRAIL-receptor (R) 1 and TRAIL-R2. In IFN-α-treated OVCAR3 cells, IRF9-RNAi inhibited transcription of TRAIL whereas Stat1-RNAi did not, suggesting that the transcription of TRAIL induced by IFN-α predominantly required IRF9. Furthermore, IFN-stimulated response element-like motifs of TRAIL bound to IFN-stimulated gene factor 3 (ISGF3) complex after IFN-α treatment. Subsequently, TRAIL-R2-RNAi inhibited both antiproliferative activities of IFN-α and TRAIL, suggesting that TRAIL-R2 mediated both IFN-α and TRAIL signals to elicit their antiproliferative activities. Finally, IRF9 overexpression facilitated IFN-α-induced apoptosis in T98G (human glioblastoma multiforme) cells, which were resistant to IFN-α. Thus, this study suggests that IRF9 is the key factor for eliciting the antiproliferative activity of IFN-α and TRAIL may be one of the potential mediators.
科研通智能强力驱动
Strongly Powered by AbleSci AI