化学
酮甾体
类固醇
脱氢
脱氢酶
酶
氢
立体化学
药物化学
接受者
异构酶
有机化学
催化作用
生物化学
激素
凝聚态物理
物理
作者
Eiji Itagaki,Hiroyuki Matushita,Tadayuki Hatta
标识
DOI:10.1093/oxfordjournals.jbchem.a123150
摘要
3-Ketosteroid-delta 1-dehydrogenase from Nocardia corallina catalyzes transhydrogenation of 3-keto-4-ene-steroid to 3-keto-1,4-diene-steroid e.g., progesterone to 1,4-androstadiene-3,17-dione. The reaction proceeded linearly at first and then soon slowed down owing to equilibration. The turnover number of this reaction was of the same magnitude as that of the dehydrogenation of 3-keto-4-ene-steroid. The pH optimum was 8.4, which is lower than that of the dehydrogenase reaction. The enzyme has a wide specificity for hydrogen acceptor steroids. The Km' and Kmax' values for these steroids and the values of the corresponding 3-keto-4-ene-steroids were compared. Kinetic studies of the steroid transhydrogenase reaction demonstrated a typical ping-pong mechanism. The enzyme oxidized 1,2-tritiated progesterone and transferred the tritium atoms to the reaction product, 4-androstene-3,17-dione, and water. Transhydrogenation in D2O resulted in the incorporation of a deuterium atom into the C2-position of 4-androstene-3,17-dione. The results indicate that the enzyme catalyzes C1, C2-trans axial abstraction of hydrogen atoms from progesterone, transfer of the 1 alpha-hydrogen to the C1-position of 1,4-androstadiene-3, 17-dione and release of the 2 beta-hydrogen to water. Reaction schemes based on the experimental results are proposed. The enzyme also catalyzes the reduction of 3-keto-1,4-diene-steroids with reduced benzyl viologen.
科研通智能强力驱动
Strongly Powered by AbleSci AI