Organic Solar Cells with Graphene Electrodes and Vapor Printed Poly(3,4-ethylenedioxythiophene) as the Hole Transporting Layers

佩多:嘘 石墨烯 材料科学 化学气相沉积 纳米技术 有机太阳能电池 石墨烯泡沫 电极 化学工程 图层(电子) 石墨烯纳米带 复合材料 聚合物 化学 工程类 物理化学
作者
Hyesung Park,Rachel M. Howden,Miles C. Barr,Vladimir Bulović,Karen K. Gleason,Jing Kong
出处
期刊:ACS Nano [American Chemical Society]
卷期号:6 (7): 6370-6377 被引量:82
标识
DOI:10.1021/nn301901v
摘要

For the successful integration of graphene as a transparent conducting electrode in organic solar cells, proper energy level alignment at the interface between the graphene and the adjacent organic layer is critical. The role of a hole transporting layer (HTL) thus becomes more significant due to the generally lower work function of graphene compared to ITO. A commonly used HTL material with ITO anodes is poly(3,4-ethylenedioxythiophene) (PEDOT) with poly(styrenesulfonate) (PSS) as the solid-state dopant. However, graphene’s hydrophobic surface renders uniform coverage of PEDOT:PSS (aqueous solution) by spin-casting very challenging. Here, we introduce a novel, yet simple, vapor printing method for creating patterned HTL PEDOT layers directly onto the graphene surface. Vapor printing represents the implementation of shadow masking in combination with oxidative chemical vapor deposition (oCVD). The oCVD method was developed for the formation of blanket (i.e., unpatterened) layers of pure PEDOT (i.e., no PSS) with systematically variable work function. In the unmasked regions, vapor printing produces complete, uniform, smooth layers of pure PEDOT over graphene. Graphene electrodes were synthesized under low-pressure chemical vapor deposition (LPCVD) using a copper catalyst. The use of another electron donor material, tetraphenyldibenzoperiflanthene, instead of copper phthalocyanine in the organic solar cells also improves the power conversion efficiency. With the vapor printed HTL, the devices using graphene electrodes yield comparable performances to the ITO reference devices (ηp,LPCVD = 3.01%, and ηp,ITO = 3.20%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意的晓啸完成签到,获得积分10
刚刚
刚刚
科研通AI5应助小李采纳,获得10
1秒前
今后应助沉甸甸采纳,获得10
4秒前
5秒前
6秒前
10秒前
zhangsudi发布了新的文献求助10
10秒前
胡燕完成签到 ,获得积分10
10秒前
深情安青应助天真千凡采纳,获得10
12秒前
13秒前
无花果应助满意的晓啸采纳,获得10
13秒前
bc夹心完成签到,获得积分20
14秒前
谦让寻凝完成签到 ,获得积分10
15秒前
无花果应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
科研助手6应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
鹊起惊梦完成签到,获得积分10
17秒前
子车茗应助科研通管家采纳,获得30
17秒前
17秒前
子车茗应助科研通管家采纳,获得30
18秒前
18秒前
18秒前
科研助手6应助科研通管家采纳,获得10
18秒前
bc夹心发布了新的文献求助10
18秒前
todd完成签到,获得积分10
18秒前
NXK发布了新的文献求助10
20秒前
zero完成签到,获得积分10
21秒前
煜清清完成签到 ,获得积分10
22秒前
wenbin完成签到 ,获得积分10
24秒前
笑的得美完成签到,获得积分10
24秒前
在水一方应助zhangsudi采纳,获得20
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322010
关于积分的说明 10208485
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872