清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A comparative study of the use of GAM and GLM in air pollution research

广义加性模型 广义线性模型 参数统计 计量经济学 平滑的 广义线性混合模型 统计 数学 参数化模型 广义估计方程 差异(会计) 会计 业务
作者
Dan Zhang,Sati Mazumdar,Vincent C. Arena
出处
期刊:Environmetrics [Wiley]
卷期号:17 (1): 81-93 被引量:51
标识
DOI:10.1002/env.751
摘要

Generalized additive models (GAMs) have been used as a standard analytic tool in time-series studies of air pollution and health during the last decade. A major statistical concern came into view recently about the appropriateness of the use of GAMs in the presence of concurvity, which is likely to be present in the data of all air pollution studies. It has been shown that the standard statistical software, such as S-plus with its gam function, can seriously overestimate the GAM model parameters and underestimate their variances in the presence of concurvity. A recently developed S-plus package, gam.exact, allows a robust assessment of parameter uncertainties for only symmetric smoothers. To date, the impact of concurvity on the parameter estimates has not been investigated fully and is limited to only high values. In this article, we have extended the scope of this investigation by encompassing a wide range of the degrees of concurvity and an alternative class of models. We have performed a simulation study where generalized linear models with natural cubic splines as the smoother function (GLM + NS) are compared systematically with GAMs with smoothing splines as the smoother function (GAM + S) in the presence of varying degrees of concurvity. We believe that, as GLM + NS provides a straightforward parametric modeling approach, its comparison with the flexible non-parametric approach, GAM + S, is well warranted. Our results indicate that GLM + NS performs better than GAM + S in regard to bias and variance estimates when medium-to-high concurvity exists in the data. Results from our illustrative example with NMMAPS Pittsburgh data are consistent with our findings from the simulations. We conclude that non-parametric smoother based models should be used for exploratory analysis for their flexibility and easy use and for suggesting parametric smoother based models when concurvity exists in the time series data. Copyright © 2005 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
woxinyouyou完成签到,获得积分0
5秒前
这学真难读下去完成签到,获得积分10
25秒前
紫熊完成签到,获得积分10
28秒前
猪宝大王完成签到,获得积分10
44秒前
1分钟前
1分钟前
优雅山柏发布了新的文献求助10
1分钟前
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
2分钟前
zxclax发布了新的文献求助30
2分钟前
科研通AI2S应助dlm采纳,获得10
2分钟前
zxclax完成签到,获得积分10
2分钟前
2分钟前
稻子完成签到 ,获得积分10
2分钟前
dlm发布了新的文献求助10
2分钟前
fangyifang完成签到,获得积分10
3分钟前
英姑应助dlm采纳,获得10
3分钟前
kmzzy完成签到,获得积分10
3分钟前
3分钟前
dlm发布了新的文献求助10
3分钟前
vbnn完成签到 ,获得积分10
4分钟前
个性归尘应助科研通管家采纳,获得30
4分钟前
慕青应助连安阳采纳,获得10
4分钟前
4分钟前
4分钟前
连安阳发布了新的文献求助10
4分钟前
连安阳完成签到,获得积分10
5分钟前
allrubbish完成签到,获得积分10
5分钟前
6分钟前
wanci应助科研通管家采纳,获得10
6分钟前
杪夏二八完成签到 ,获得积分10
6分钟前
蚂蚁踢大象完成签到 ,获得积分10
6分钟前
KINGAZX完成签到 ,获得积分10
6分钟前
6分钟前
似水流年完成签到 ,获得积分10
7分钟前
轻松小张完成签到,获得积分10
7分钟前
Ms_Galaxea完成签到,获得积分10
7分钟前
科研小白完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837511
求助须知:如何正确求助?哪些是违规求助? 3379609
关于积分的说明 10509963
捐赠科研通 3099208
什么是DOI,文献DOI怎么找? 1707000
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772597