A Systematic Prediction of Multiple Drug-Target Interactions from Chemical, Genomic, and Pharmacological Data

药物发现 生物信息学 稳健性(进化) 计算生物学 计算机科学 随机森林 支持向量机 药物靶点 药品 机器学习 基因组学 人工智能 生物信息学 数据挖掘 生物 药理学 基因组 遗传学 基因
作者
Hua Yu,Mantang Chen,Xue Xu,Yan Li,Huihui Zhao,Yupeng Fang,Xiuxiu Li,Wei Zhou,Wei Wang,Yonghua Wang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:7 (5): e37608-e37608 被引量:401
标识
DOI:10.1371/journal.pone.0037608
摘要

In silico prediction of drug-target interactions from heterogeneous biological data can advance our system-level search for drug molecules and therapeutic targets, which efforts have not yet reached full fruition. In this work, we report a systematic approach that efficiently integrates the chemical, genomic, and pharmacological information for drug targeting and discovery on a large scale, based on two powerful methods of Random Forest (RF) and Support Vector Machine (SVM). The performance of the derived models was evaluated and verified with internally five-fold cross-validation and four external independent validations. The optimal models show impressive performance of prediction for drug-target interactions, with a concordance of 82.83%, a sensitivity of 81.33%, and a specificity of 93.62%, respectively. The consistence of the performances of the RF and SVM models demonstrates the reliability and robustness of the obtained models. In addition, the validated models were employed to systematically predict known/unknown drugs and targets involving the enzymes, ion channels, GPCRs, and nuclear receptors, which can be further mapped to functional ontologies such as target-disease associations and target-target interaction networks. This approach is expected to help fill the existing gap between chemical genomics and network pharmacology and thus accelerate the drug discovery processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
妮子要学习完成签到,获得积分10
3秒前
完美世界应助张涛采纳,获得10
5秒前
6秒前
6秒前
6秒前
循环完成签到,获得积分10
7秒前
踏实的盼秋完成签到 ,获得积分10
8秒前
郑波涛发布了新的文献求助10
11秒前
循环发布了新的文献求助10
12秒前
滴滴完成签到 ,获得积分10
13秒前
吼吼完成签到,获得积分10
15秒前
HY完成签到,获得积分10
16秒前
William_l_c发布了新的文献求助10
17秒前
山外山完成签到,获得积分10
17秒前
谈舒怡完成签到,获得积分10
17秒前
23秒前
Kirito举报xyy求助涉嫌违规
23秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
Owen应助科研通管家采纳,获得10
24秒前
随遇而安应助科研通管家采纳,获得20
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
研友_VZG7GZ应助科研通管家采纳,获得10
24秒前
24秒前
852应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
24秒前
superLmy完成签到 ,获得积分10
25秒前
wanci应助云海老采纳,获得10
26秒前
北辰发布了新的文献求助10
27秒前
Akim应助hanwy采纳,获得10
31秒前
31秒前
多和5的武器完成签到,获得积分10
32秒前
半圭为璋发布了新的文献求助10
33秒前
灰色白面鸮完成签到,获得积分10
34秒前
Srui完成签到,获得积分10
37秒前
37秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846044
求助须知:如何正确求助?哪些是违规求助? 3388416
关于积分的说明 10553050
捐赠科研通 3108956
什么是DOI,文献DOI怎么找? 1713289
邀请新用户注册赠送积分活动 824620
科研通“疑难数据库(出版商)”最低求助积分说明 774982