抑制因子
心理压抑
溶原循环
噬菌体
λ噬菌体
溶解循环
Lac抑制因子
兰姆达
基因
操作员(生物学)
生物
结合位点
发起人
遗传学
YY1年
分子生物学
物理
转录因子
基因表达
量子力学
病毒
大肠杆菌
作者
Gary K. Ackers,A D Johnson,M. A. Shea
标识
DOI:10.1073/pnas.79.4.1129
摘要
A statistical thermodynamic model has been developed to account for the cooperative interactions of the bacteriophage lambda repressor with the lambda right operator. The model incorporates a general theory for quantitatively interpreting cooperative site-specific equilibrium binding data. Values for all interaction parameters of the model have been evaluated at 37 degrees C, 0.2 M KCl, from results of DNase protection experiments in vitro [A. D. Johnson, B. J. Meyer, & M. Ptashne, Proc. Natl. Acad. Sci. USA (1979) 76, 5061-5065]. With these values, the model predicts repression curves at the divergent promoters PR and PRM that control transcription of genes coding for the regulatory proteins cro and repressor, respectively. At physiological repressor concentrations, repression at PR is predicted to be nearly complete whereas PRM is predicted to remain highly active. The results demonstrate the importance of cooperative interactions between repressor dimers bound to the adjacent operator sites OR1 and OR2 in maintaining a stable lysogenic state and in allowing efficient switchover to the lytic state during induction.
科研通智能强力驱动
Strongly Powered by AbleSci AI