辣椒疫霉
恶臭假单胞菌
生物
群集运动
莎梵婷
微生物学
最后腐霉
卵菌
脂肽
尖孢镰刀菌
根际
灰葡萄孢菌
疫霉菌
茄丝核菌
生物膜
植物
细菌
生物化学
病菌
群体感应
枯草芽孢杆菌
基因
遗传学
作者
M. Kruijt,Ha Tran,Jos M. Raaijmakers
标识
DOI:10.1111/j.1365-2672.2009.04244.x
摘要
Plant growth-promoting Pseudomonas putida strain 267, originally isolated from the rhizosphere of black pepper, produces biosurfactants that cause lysis of zoospores of the oomycete pathogen Phytophthora capsici. The biosurfactants were characterized, the biosynthesis gene(s) partially identified, and their role in control of Phytophthora damping-off of cucumber evaluated.The biosurfactants were shown to lyse zoospores of Phy. capsici and inhibit growth of the fungal pathogens Botrytis cinerea and Rhizoctonia solani. In vitro assays further showed that the biosurfactants of strain 267 are essential in swarming motility and biofilm formation. In spite of the zoosporicidal activity, the biosurfactants did not play a significant role in control of Phytophthora damping-off of cucumber, since both wild type strain 267 and its biosurfactant-deficient mutant were equally effective, and addition of the biosurfactants did not provide control. Genetic characterization revealed that surfactant biosynthesis in strain 267 is governed by homologues of PsoA and PsoB, two nonribosomal peptide synthetases involved in production of the cyclic lipopeptides (CLPs) putisolvin I and II. The structural relatedness of the biosurfactants of strain 267 to putisolvins I and II was supported by LC-MS and MS-MS analyses.The biosurfactants produced by Ps. putida 267 were identified as putisolvin-like CLPs; they are essential in swarming motility and biofilm formation, and have zoosporicidal and antifungal activities. Strain 267 provides excellent biocontrol activity against Phytophthora damping-off of cucumber, but the lipopeptide surfactants are not involved in disease suppression.Pseudomonas putida 267 suppresses Phy. capsici damping-off of cucumber and provides a potential supplementary strategy to control this economically important oomycete pathogen. The putisolvin-like biosurfactants exhibit zoosporicidal and antifungal activities, yet they do not contribute to biocontrol of Phy. capsici and colonization of cucumber roots by Ps. putida 267. These results suggest that Ps. putida 267 employs other, yet uncharacterized, mechanisms to suppress Phy. capsici.
科研通智能强力驱动
Strongly Powered by AbleSci AI