已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PFG NMR diffusion experiments for complex systems

扩散 材料科学 化学物理 化学 物理 热力学
作者
Konstantin I. Momot,Philip W. Kuchel
出处
期刊:Concepts in Magnetic Resonance Part A [Hindawi Limited]
卷期号:28A (4): 249-269 被引量:61
标识
DOI:10.1002/cmr.a.20056
摘要

Concepts in Magnetic Resonance Part AVolume 28A, Issue 4 p. 249-269 Free to Read PFG NMR diffusion experiments for complex systems Konstantin I. Momot, Corresponding Author Konstantin I. Momot [email protected] School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, AustraliaSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, AustraliaSearch for more papers by this authorPhilip W. Kuchel, Philip W. Kuchel School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006, AustraliaSearch for more papers by this author Konstantin I. Momot, Corresponding Author Konstantin I. Momot [email protected] School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, AustraliaSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, AustraliaSearch for more papers by this authorPhilip W. Kuchel, Philip W. Kuchel School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006, AustraliaSearch for more papers by this author First published: 14 July 2006 https://doi.org/10.1002/cmr.a.20056Citations: 58AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Many practical applications of diffusion NMR, ranging from biomedical to industrial, entail the measurement of low-concentration solutes in nondeuterated, compositionally complex systems. This article presents examples of robust, versatile diffusion experiments that can be used with nondeuterated solvents at nonambient temperatures. Specifically, three experiments are presented in detail: CONVEX, which combines excitation-sculpting solvent suppression with double-echo convection-compensating PGSE; DQDiff, which implements double-quantum filtered diffusion measurements in a convection-compensating mode; and applications of oscillating-gradient spin-echo (OGSE) to systems with homonuclear scalar couplings. These examples are based on the recent work by the authors and relate to a variety of systems, ranging from simple solutions to colloidal and polymeric systems. Besides the applied aspects, we review the general methodology used to treat the effects of diffusion and flow in NMR experiments, and apply this theory to derive the diffusion attenuation expression for each of the experiments presented. The article should be useful to beginners as well as advanced users of general NMR wishing to learn about diffusion measurements. © 2006 Wiley Periodicals, Inc. Concepts Magn Reson Part A 28A: 249–269, 2006 REFERENCES 1 Johnson CS. 1999. Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc 34: 203–256. 10.1016/S0079-6565(99)00003-5 CASWeb of Science®Google Scholar 2 Johnson CS. 1996. Diffusion measurements by magnetic field gradient methods. In: DM Grant, RK Harris, editors. Encyclopedia of nuclear magnetic resonance. Vol. 3. New York: Wiley. p 1626–1644. Google Scholar 3 Callaghan PT, Stepisnik J. 1996. Generalized analysis of motion using magnetic field gradients. Adv Magn Optical Reson 19: 325–388. 10.1016/S1057-2732(96)80020-9 CASGoogle Scholar 4 Callaghan PT. 1991. Principles of nuclear magnetic resonance microscopy. Oxford: Clarendon Press. Google Scholar 5 Kärger J, Pfeifer H, Heink W. 1988. Principles and application of self-diffusion measurements by nuclear magnetic resonance. Adv Magn Reson 12: 1–89. 10.1016/B978-0-12-025512-2.50004-X Google Scholar 6 Beckwith-Hall BM, Thompson NA, Nicholson JK, Lindon JC, Holmes E. 2003. A metabonomic investigation of hepatotoxicity using diffusion-edited H-1 NMR spectroscopy of blood serum. Analyst 128: 814–818. 10.1039/b302360p CASPubMedWeb of Science®Google Scholar 7 Liu ML, Tang HR, Nicholson JK, Lindon JC. 2002. Use of H-1 NMR-determined diffusion coefficients to characterize lipoprotein fractions in human blood plasma. Magn Reson Chem 40: S83–88. 10.1002/mrc.1121 CASWeb of Science®Google Scholar 8 Dalvit C, Bohlen JM. 1997. Analysis of biofluids and chemical mixtures in non-deuterated solvents with 1H diffusion-weighted PFG phase-sensitive double-quantum NMR spectroscopy. NMR Biomed 10: 285–291. 10.1002/(SICI)1099-1492(199709)10:6<285::AID-NBM485>3.0.CO;2-1 CASPubMedWeb of Science®Google Scholar 9 Stockman BJ, Dalvit C. 2002. NMR screening techniques in drug discovery and drug design. Prog Nucl Magn Reson Spectrosc 41: 187–231. 10.1016/S0079-6565(02)00049-3 CASWeb of Science®Google Scholar 10 Lucas LH, Larive CK. 2004. Measuring ligand-protein binding using NMR diffusion experiments. Concepts Magn Reson Part A 20A: 24–41. 10.1002/cmr.a.10094 CASWeb of Science®Google Scholar 11 Cohen Y, Assaf Y. 2002. High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal tissues—a technical review. NMR Biomed 15: 516–542. 10.1002/nbm.778 CASPubMedWeb of Science®Google Scholar 12 Price WS, Kuchel PW. 1990. Restricted diffusion of bicarbonate and hypophosphite ions modulated by transport in suspensions of red blood cells. J Magn Reson 90: 100–110. 10.1016/0022-2364(90)90368-J CASWeb of Science®Google Scholar 13 Kuchel PW, Durrant CJ, Chapman BE, Jarrett PS, Regan DG. 2000. Evidence of red cell alignment in the magnetic field of an NMR spectrometer based on the diffusion tensor of water. J Magn Reson 145: 291–301. 10.1006/jmre.2000.2093 CASPubMedWeb of Science®Google Scholar 14 Lindblom G, Orädd G. 1994. NMR studies of translational diffusion in lyotropic liquid- crystals and lipid-membranes. Prog Nucl Magn Reson Spectrosc 26: 483–515. 10.1016/0079-6565(94)80014-6 CASWeb of Science®Google Scholar 15 McConville P, Pope JM. 2000. A comparison of water binding and mobility in contact lens hydrogels from NMR measurements of the water self-diffusion coefficient. Polymer 41: 9081–9088. 10.1016/S0032-3861(00)00295-0 CASWeb of Science®Google Scholar 16 Seymour JD, Codd SL, Gjersing EL, Stewart PS. 2004. Magnetic resonance microscopy of biofilm structure and impact on transport in a capillary bioreactor. J Magn Reson 167: 322–327. 10.1016/j.jmr.2004.01.009 CASPubMedWeb of Science®Google Scholar 17 Gil AM, Duarte I, Cabrita E, Goodfellow BJ, Spraul M, Kerssebaum R. 2004. Exploratory applications of diffusion ordered spectroscopy to liquid foods: an aid towards spectral assignment. Anal Chim Acta 506: 215–223. 10.1016/j.aca.2003.11.006 CASWeb of Science®Google Scholar 18 Kortunov P, Vasenkov S, Kärger J, Elia MF, Perez M, Stocker M, et al. 2005. Pulsed-field gradient nuclear magnetic resonance study of transport properties of fluid catalytic cracking catalysts. Magn Reson Imaging 23: 233–237. 10.1016/j.mri.2004.11.016 CASPubMedWeb of Science®Google Scholar 19 Furo I. 2005. NMR spectroscopy of micelles and related systems. J Mol Liq 117: 117–137. 10.1016/j.molliq.2004.08.010 CASWeb of Science®Google Scholar 20 Söderman O, Stilbs P. 1994. NMR studies of complex surfactant systems. Prog Nucl Magn Reson Spectrosc 26: 445–482. 10.1016/0079-6565(94)80013-8 CASWeb of Science®Google Scholar 21 Xu B, Lynn GW, Guo J, Melnichenko YB, Wignall GD, McClain JB, et al. 2005. NMR and SANS studies of aggregation and microemulsion formation by phosphorus fluorosurfactants in liquid and supercritical carbon dioxide. J Phys Chem B 109: 10261–10269. 10.1021/jp0580322 CASPubMedWeb of Science®Google Scholar 22 Momot KI, Kuchel PW. 2003. Pulsed field gradient nuclear magnetic resonance as a tool for studying drug delivery systems. Concepts Magn Reson 19A: 51–64. 10.1002/cmr.a.10092 CASWeb of Science®Google Scholar 23 Momot KI, Kuchel PW, Chapman BE, Deo P, Whittaker D. 2003. NMR study of the association of propofol with nonionic surfactants. Langmuir 19: 2088–2095. 10.1021/la026722g CASWeb of Science®Google Scholar 24 Cain JB, Zhang K, Betts DE, DeSimone JM, Johnson CS. 1998. Diffusion of block copolymers in liquid CO2: evidence of self-assembly from pulsed field gradient NMR. J Am Chem Soc 120: 9390–9391. 10.1021/ja981328j CASWeb of Science®Google Scholar 25 Yamane Y, Kobayashi M, Kimura H, Kuroki S, Ando I. 2002. Diffusional behavior of amino acids in solid-phase reaction field as studied by 1H-1 pulsed-field-gradient spin-echo NMR method. Polymer 43: 1767–1772. 10.1016/S0032-3861(01)00786-8 CASWeb of Science®Google Scholar 26 Guéron M, Plateau P, Decorps M. 1991. Solvent signal suppression in NMR. Prog Nucl Magn Reson Spectrosc 23: 135–209. 10.1016/0079-6565(91)80007-O CASWeb of Science®Google Scholar 27 Davies S, Bauer C, Barker P, Freeman R. 1985. The dynamic-range problem in NMR. J Magn Reson 64: 155–159. CASWeb of Science®Google Scholar 28 Price WS, Elwinger F, Vigouroux C, Stilbs P. 2002. PGSE-WATERGATE, a new tool for NMR diffusion-based studies of ligand-macromolecule binding. Magn Reson Chem 40: 391–395. 10.1002/mrc.1029 CASWeb of Science®Google Scholar 29 Momot KI, Kuchel PW. 2004. Convection-compensating PGSE experiment incorporating excitation-sculpting water suppression (CONVEX). J Magn Reson 169: 92–101. 10.1016/j.jmr.2004.04.007 CASPubMedWeb of Science®Google Scholar 30 Simorellis AK, Flynn PF. 2004. A PFG NMR experiment for translational diffusion measurements in low-viscosity solvents containing multiple resonances. J Magn Reson 170: 322–328. 10.1016/j.jmr.2004.07.010 CASPubMedWeb of Science®Google Scholar 31 Antalek B. 2002. Using pulsed gradient spin echo NMR for chemical mixture analysis: how to obtain optimum results. Concepts Magn Reson 14: 225–258. 10.1002/cmr.10026 CASWeb of Science®Google Scholar 32 Armstrong GS, Loening NM, Curtis JE, Shaka AJ, Mandelshtam VA. 2003. Processing DOSY spectra using the regularized resolvent transform. J Magn Reson 163: 139–148. 10.1016/S1090-7807(03)00126-5 CASPubMedWeb of Science®Google Scholar 33 Momot KI, Kuchel PW. 2005. Convection-compensating diffusion experiments with phase-sensitive double-quantum filtering. J Magn Reson 174: 229–236. 10.1016/j.jmr.2005.02.003 CASPubMedWeb of Science®Google Scholar 34 Goux WJ, Verkruyse LA, Salter SJ. 1990. The impact of Rayleigh-Bénard convection on NMR pulsed-field-gradient diffusion measurements. J Magn Reson 88: 609–614. 10.1016/0022-2364(90)90292-H CASWeb of Science®Google Scholar 35 Jerschow A, Müller N. 1998. Convection compensation in gradient enhanced nuclear magnetic resonance spectroscopy. J Magn Reson 132: 13–18. 10.1006/jmre.1998.1400 CASWeb of Science®Google Scholar 36 Sørland GH, Seland JG, Krane J, Anthonsen HW. 2000. Improved convection compensating pulsed field gradient spin-echo and stimulated-echo methods. J Magn Reson 142: 323–325. 10.1006/jmre.1999.1941 CASPubMedWeb of Science®Google Scholar 37 Jerschow A, Müller N. 1997. Suppression of convection artifacts in stimulated-echo diffusion experiments. Double-stimulated-echo experiments. J Magn Reson 125: 372–375. 10.1006/jmre.1997.1123 CASWeb of Science®Google Scholar 38 Wu DH, Chen AD, Johnson CS. 1996. Three-dimensional diffusion-ordered NMR spectroscopy: the homonuclear COSY-DOSY experiment. J Magn Reson A 121: 88–91. 10.1006/jmra.1996.0142 CASWeb of Science®Google Scholar 39 Momot KI, Kuchel PW, Chapman BE. 2005. Acquisition of pure-phase diffusion spectra using oscillating-gradient spin echo. J Magn Reson 176: 151–159. 10.1016/j.jmr.2005.06.001 CASPubMedWeb of Science®Google Scholar 40 Regan DG, Momot KI, Martens PJ, Poole-Warren LA, Kuchel PW. 2006. NMR measurement of small-molecule diffusion in PVA hydrogels: a comparison of CONVEX and standard PGSE methods. Diffusion Fundamentals Online. 4:1.1–1.18. Available at: http://www.uni-leipzig.de/diffusion/journal/. Google Scholar 41 Stejskal EO, Tanner JE. 1965. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42: 288–292. 10.1063/1.1695690 CASWeb of Science®Google Scholar 42 Kessler H, Gehrke M, Griesinger C. 1988. Two-dimensional NMR spectroscopy: background and overview of the experiments. Angew Chem Int Edit Engl 27: 490–536. 10.1002/anie.198804901 Web of Science®Google Scholar 43 Mateescu GD, Valeriu A. 1993. 2D NMR density matrix and product operator treatment. Englewood Cliffs, NJ: PTR Prentice Hall. Google Scholar 44 Bain AD. 1984. Coherence levels and coherence pathways in NMR. A simple way to design phase cycling procedures. J Magn Reson 56: 418–427. 10.1016/0022-2364(84)90305-6 CASWeb of Science®Google Scholar 45 Sørensen OW, Eich GW, Levitt MH, Bodenhausen G, Ernst RR. 1983. Product operator-formalism for the description of NMR pulse experiments. Prog Nucl Magn Reson Spectrosc 16: 163–192. 10.1016/0079-6565(84)80005-9 Web of Science®Google Scholar 46 Levitt MH. 2001. Spin dynamics: basics of nuclear magnetic resonance. Chichester, England: John Wiley & Sons. Google Scholar 47 Packer KJ, Wright KM. 1983. The use of single-spin operator basis sets in the NMR spectroscopy of scalar-coupled spin systems. Mol Phys 50: 797–813. 10.1080/00268978300102691 CASWeb of Science®Google Scholar 48 Müller N, Bodenhausen G, Ernst RR. 1987. Relaxation-induced violations of coherence transfer selection-rules in nuclear-magnetic-resonance. J Magn Reson 75: 297–334. 10.1016/0022-2364(87)90038-2 CASWeb of Science®Google Scholar 49 Prigogine I. 1967. Introduction to thermodynamics of irreversible processes. New York: Interscience. Google Scholar 50 Hwang TL, Shaka AJ. 1995. Water suppression that works—excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson A 112: 275–279. 10.1006/jmra.1995.1047 CASWeb of Science®Google Scholar 51 Jerschow A. 1999. Unwanted signal leakage in excitation sculpting with single axis gradients. J Magn Reson 137: 206–214. 10.1006/jmre.1998.1652 CASPubMedWeb of Science®Google Scholar 52 Piotto M, Saudek V, Sklenář V. 1992. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2: 661–665. 10.1007/BF02192855 CASPubMedWeb of Science®Google Scholar 53 Sklenář V, Piotto M, Leppik R, Saudek V. 1993. Gradient-tailored water suppression for H-1-N-15 HSQC experiments optimized to retain full sensitivity. J Magn Reson A 102: 241–245. 10.1006/jmra.1993.1098 CASWeb of Science®Google Scholar 54 Andersson A, Almqvist J, Hagn F, Mäler L. 2004. Diffusion and dynamics of penetratin in different membrane mimicking media. Biochim Biophys Acta-Biomembr 1661: 18–25. 10.1016/j.bbamem.2003.11.014 CASPubMedWeb of Science®Google Scholar 55 Lekkerkerker HNW, Dhont JKG. 1984. On the calculation of the self-diffusion coefficient of interacting brownian particles. J Chem Phys 80: 5790–5792. 10.1063/1.446602 CASWeb of Science®Google Scholar 56 Kuchel PW, Chapman BE. 1993. Heteronuclear double-quantum-coherence selection with magnetic-field gradients in diffusion experiments. J Magn Reson A 101: 53–59. 10.1006/jmra.1993.1007 CASWeb of Science®Google Scholar 57 Chapman BE, Kuchel PW. 1993. Sensitivity in heteronuclear multiple-quantum diffusion experiments. J Magn Reson A 102: 105–109. 10.1006/jmra.1993.1075 CASWeb of Science®Google Scholar 58 Martin JF, Selwyn LS, Vold RR, Vold RL. 1982. The determination of translational diffusion constants in liquid crystals from pulsed field gradient double quantum spin echo decays. J Chem Phys 76: 2632–4. 10.1063/1.443243 CASPubMedWeb of Science®Google Scholar 59 Zax D, Pines A. 1983. Study of anisotropic diffusion of oriented molecules by multiple quantum spin echoes. J Chem Phys 78: 6333–4. 10.1063/1.444559 CASWeb of Science®Google Scholar 60 Liu M, Mao X-A, Ye C, Nicholson JK, Lindon JC. 1998. Enhanced effect of magnetic field gradients using multiple quantum NMR spectroscopy applied to self-diffusion coefficient measurement. Mol Phys 93: 913–920. CASWeb of Science®Google Scholar 61 Ernst RR, Bodenhausen G, Wokaun A. 1987. Principles of nuclear magnetic resonance in one and two dimensions. Oxford: Clarendon Press. Web of Science®Google Scholar 62 Norwood TJ. 1992. Multiple-quantum NMR methods. Prog Nucl Magn Reson Spectrosc 24: 295–375. 10.1016/0079-6565(92)80005-Z CASWeb of Science®Google Scholar 63 Callaghan PT, Codd SL, Seymour JD. 1999. Spatial coherence phenomena arising from translational spin motion in gradient spin echo experiments. Concepts Magn Reson 11: 181–202. 10.1002/(SICI)1099-0534(1999)11:4<181::AID-CMR1>3.0.CO;2-T CASWeb of Science®Google Scholar 64 Stepišnik J. 1985. Measuring and imaging of flow by NMR. Prog Nucl Magn Reson Spectrosc 17: 187–209. 10.1016/0079-6565(85)80008-X Web of Science®Google Scholar 65 Schachter M, Does MD, Anderson AW, Gore JC. 2000. Measurements of restricted diffusion using an oscillating gradient spin-echo sequence. J Magn Reson 147: 232–237. 10.1006/jmre.2000.2203 CASPubMedWeb of Science®Google Scholar 66 Parsons EC, Does MD, Gore JC. 2003. Modified oscillating gradient pulses for direct sampling of the diffusion spectrum suitable for imaging sequences. Magn Reson Imaging 21: 279–285. 10.1016/S0730-725X(03)00155-3 CASPubMedWeb of Science®Google Scholar Citing Literature Volume28A, Issue4July 2006Pages 249-269 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
3秒前
4秒前
Ya完成签到 ,获得积分10
5秒前
6秒前
坚强难摧发布了新的文献求助10
8秒前
闻闻完成签到 ,获得积分10
9秒前
orixero应助zxy采纳,获得10
10秒前
14秒前
ding应助坚强难摧采纳,获得10
15秒前
善良的西瓜完成签到 ,获得积分10
15秒前
马天垚发布了新的文献求助10
19秒前
20秒前
Lucas应助马天垚采纳,获得10
25秒前
25秒前
28秒前
xun发布了新的文献求助10
31秒前
shinysparrow应助酷炫烤鸡采纳,获得10
32秒前
33秒前
gonna完成签到,获得积分10
35秒前
深情安青应助峇蘭采纳,获得10
40秒前
可爱的函函应助zz采纳,获得10
40秒前
shinysparrow应助科研通管家采纳,获得10
41秒前
木木完成签到,获得积分20
41秒前
领导范儿应助科研通管家采纳,获得10
41秒前
葛倩文关注了科研通微信公众号
42秒前
缥缈纲完成签到,获得积分10
48秒前
1111完成签到 ,获得积分10
56秒前
糊涂涂完成签到 ,获得积分10
59秒前
yyyyds发布了新的文献求助10
1分钟前
轻松的红牛完成签到,获得积分10
1分钟前
1分钟前
看文献的韩章浅完成签到,获得积分10
1分钟前
zxy完成签到,获得积分10
1分钟前
1分钟前
饭特稀完成签到 ,获得积分10
1分钟前
zxy发布了新的文献求助10
1分钟前
酷炫烤鸡完成签到,获得积分10
1分钟前
1分钟前
情怀应助乌托邦的兔纸采纳,获得10
1分钟前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
Epilepsy: A Comprehensive Textbook 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2472502
求助须知:如何正确求助?哪些是违规求助? 2138599
关于积分的说明 5450200
捐赠科研通 1862478
什么是DOI,文献DOI怎么找? 926147
版权声明 562786
科研通“疑难数据库(出版商)”最低求助积分说明 495373