清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deformable MR-CT image registration using an unsupervised, dual-channel network for neurosurgical guidance

人工智能 图像配准 对偶(语法数字) 计算机科学 频道(广播) 计算机视觉 图像(数学) 文学类 计算机网络 艺术
作者
Runze Han,Craig Jones,J. Lee,Pengwei Wu,Prasad Vagdargi,Ali Uneri,Patrick A. Helm,M Luciano,William S. Anderson,Jeffrey H. Siewerdsen
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:75: 102292-102292 被引量:42
标识
DOI:10.1016/j.media.2021.102292
摘要

The accuracy of minimally invasive, intracranial neurosurgery can be challenged by deformation of brain tissue - e.g., up to 10 mm due to egress of cerebrospinal fluid during neuroendoscopic approach. We report an unsupervised, deep learning-based registration framework to resolve such deformations between preoperative MR and intraoperative CT with fast runtime for neurosurgical guidance.The framework incorporates subnetworks for MR and CT image synthesis with a dual-channel registration subnetwork (with synthesis uncertainty providing spatially varying weights on the dual-channel loss) to estimate a diffeomorphic deformation field from both the MR and CT channels. An end-to-end training is proposed that jointly optimizes both the synthesis and registration subnetworks. The proposed framework was investigated using three datasets: (1) paired MR/CT with simulated deformations; (2) paired MR/CT with real deformations; and (3) a neurosurgery dataset with real deformation. Two state-of-the-art methods (Symmetric Normalization and VoxelMorph) were implemented as a basis of comparison, and variations in the proposed dual-channel network were investigated, including single-channel registration, fusion without uncertainty weighting, and conventional sequential training of the synthesis and registration subnetworks.The proposed method achieved: (1) Dice coefficient = 0.82±0.07 and TRE = 1.2 ± 0.6 mm on paired MR/CT with simulated deformations; (2) Dice coefficient = 0.83 ± 0.07 and TRE = 1.4 ± 0.7 mm on paired MR/CT with real deformations; and (3) Dice = 0.79 ± 0.13 and TRE = 1.6 ± 1.0 mm on the neurosurgery dataset with real deformations. The dual-channel registration with uncertainty weighting demonstrated superior performance (e.g., TRE = 1.2 ± 0.6 mm) compared to single-channel registration (TRE = 1.6 ± 1.0 mm, p < 0.05 for CT channel and TRE = 1.3 ± 0.7 mm for MR channel) and dual-channel registration without uncertainty weighting (TRE = 1.4 ± 0.8 mm, p < 0.05). End-to-end training of the synthesis and registration subnetworks also improved performance compared to the conventional sequential training strategy (TRE = 1.3 ± 0.6 mm). Registration runtime with the proposed network was ∼3 s.The deformable registration framework based on dual-channel MR/CT registration with spatially varying weights and end-to-end training achieved geometric accuracy and runtime that was superior to state-of-the-art baseline methods and various ablations of the proposed network. The accuracy and runtime of the method may be compatible with the requirements of high-precision neurosurgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sg完成签到 ,获得积分10
5秒前
BINBIN完成签到 ,获得积分10
9秒前
顾城浪子完成签到,获得积分10
31秒前
wanci应助科研通管家采纳,获得10
1分钟前
小丸子完成签到 ,获得积分0
1分钟前
Bass完成签到,获得积分10
1分钟前
西山菩提完成签到,获得积分10
1分钟前
娟儿完成签到 ,获得积分10
2分钟前
Dongjie完成签到,获得积分10
2分钟前
LOST完成签到 ,获得积分10
2分钟前
科研啄木鸟完成签到 ,获得积分10
2分钟前
LeoBigman完成签到 ,获得积分10
2分钟前
雪花完成签到 ,获得积分10
2分钟前
3分钟前
lod完成签到,获得积分10
3分钟前
Wells应助科研通管家采纳,获得10
3分钟前
小蘑菇应助科研通管家采纳,获得10
3分钟前
繁荣的夏岚完成签到 ,获得积分10
3分钟前
chichenglin完成签到 ,获得积分0
3分钟前
3分钟前
细心帽子发布了新的文献求助10
3分钟前
黑眼圈完成签到 ,获得积分10
3分钟前
二呆完成签到 ,获得积分10
4分钟前
历史真相完成签到,获得积分10
4分钟前
mulidexin2021完成签到,获得积分10
4分钟前
氕氘氚完成签到 ,获得积分10
4分钟前
John完成签到 ,获得积分10
4分钟前
jlwang完成签到,获得积分10
4分钟前
V_I_G完成签到 ,获得积分10
5分钟前
creep2020完成签到,获得积分10
5分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
wang完成签到,获得积分10
5分钟前
Japrin完成签到,获得积分10
6分钟前
SaulXu发布了新的文献求助10
6分钟前
阿尼完成签到 ,获得积分10
6分钟前
酷波er应助SaulXu采纳,获得10
7分钟前
7分钟前
friend516完成签到 ,获得积分10
7分钟前
Benhnhk21发布了新的文献求助10
7分钟前
Synan完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4471610
求助须知:如何正确求助?哪些是违规求助? 3931294
关于积分的说明 12196540
捐赠科研通 3585621
什么是DOI,文献DOI怎么找? 1970971
邀请新用户注册赠送积分活动 1008867
科研通“疑难数据库(出版商)”最低求助积分说明 902757