基态
有界函数
数学
格子(音乐)
非线性系统
非线性薛定谔方程
图形
内哈里歧管
数学物理
薛定谔方程
组合数学
离散数学
数学分析
物理
量子力学
声学
标识
DOI:10.1007/s00526-023-02470-1
摘要
In this paper, we study the nonlinear Schrödinger equation $$ -\Delta u+V(x)u=f(x,u) $$ on the lattice graph $$\mathbb {Z}^{N}$$ . Using the Nehari method, we prove that when f satisfies some growth conditions and the potential function V is periodic or bounded, the above equation admits a ground state solution. Moreover, we extend our results from $$\mathbb {Z}^{N}$$ to quasi-transitive graphs.
科研通智能强力驱动
Strongly Powered by AbleSci AI